Visualizing Execution Traces with Task Dependencies

Blake Haugen
Innovative Computing

Stephen Richmond

Innovative Computing

Jakub Kurzak

Innovative Computing

Laboratory Laboratory Laboratory
University of Tennessee University of Tennessee University of Tennessee
Knoxville _ Knoxville Knoxville
bhaugen@utk.edu srichmo1@utk.edu kurzak@icl.utk.edu

Chad A. Steed

Computational Sciences and

Engineering
Oak Ridge National
Laboratory

csteed@acm.org

ABSTRACT

Task-based scheduling has emerged as one method to reduce
the complexity of parallel computing. When using task-
based schedulers, developers must frame their computation
as a series of tasks with various data dependencies. The
scheduler can take these tasks, along with their input and
output dependencies, and schedule the task in parallel across
a node or cluster. While these schedulers simplify the pro-
cess of parallel software development, they can obfuscate the
performance characteristics of the execution of an algorithm.

The execution trace has been used for many years to give
developers a visual representation of how their computations
are performed. These methods can be employed to visualize
when and where each of the tasks in a task-based algorithm
is scheduled. In addition, the task dependencies can be used
to create a directed acyclic graph (DAG) that can also be
visualized to demonstrate the dependencies of the various
tasks that make up a workload. The work presented here
alms to combine these two data sets and extend execution
trace visualization to better suit task-based workloads.

This paper presents a brief description of task-based sched-
ulers and the performance data they produce. It will then
describe an interactive extension to the current trace visu-
alization methods that combines the trace and DAG data
sets. This new tool allows users to gain a greater under-
standing of how their tasks are scheduled. It also provides
a simplified way for developers to evaluate and debug the
performance of their scheduler.

@2015 Association for Computing Machinery. ACM acknowledges that this con-
tribution was authored or co-authored by an employee, contractor or affiliate of the
United States government. As such, the United States Government retains a nonexclu-
sive, royalty-free right to publish or reproduce this article, or to allow others to do so,
for Government purposes only.

VPA2015 November 15-20, 2015, Austin, TX, USA

@2015 ACM. ISBN 978-1-4503-4013-7/15/11 $15.00.

DOI: http://dx.doi.org/10.1145/2835238.2835240

Jack Dongarra
Innovative Computing
Laboratory
University of Tennessee
Knoxville
Oak Ridge National
Laboratory
University of Manchester

dongarra@eecs.utk.edu

Keywords
Task-Based Scheduling, Execution Trace, Data Movement,
DAG

1. INTRODUCTION

In the last decade, the microchip industry has shifted to
a multicore paradigm and consequently altered the path of
software development. Prior to this shift, the increasing
clock frequency of CPUs translated into performance im-
provement and software modifications were not necessary
to increase performance. Eventually, the frequency of new
microprocessors stabilized while the number of cores began
to increase. As a result, developers must now modify their
software to make performance gains on new hardware [25)].
However, adding parallelism to software is generally a non-
trivial task.

Unix platforms provide POSIX threads (Pthreads) that can
be used to develop software that utilize multiple cores on
multicore hardware. Unfortunately, developing code that
efficiently maps a computational problem to Pthreads is a
challenging task requiring expert level knowledge for most
problems. In order to deal with the challenges associated
with Pthreads, several higher level APIs are available to sim-
plify the development of parallel software. One of the most
common software tools is OpenMP. This library employs
compiler directives to parallelize relatively simple loops across
the cores available in the system [14]. Early versions of this
paradigm supported basic fork-join parallelism but lacked
support for more complex dependencies or heterogeneous
computing resources.

Task-based parallel computing emerged as an alternative to
the simple fork-join parallelism employed in early versions of
OpenMP. In the task-based paradigm, the developers are re-
sponsible for expressing their computation as a set of tasks.
These tasks can be scheduled in sequence on a single CPU.
However, it is often possible to execute multiple tasks in par-
allel, so long as the task and data dependencies are satisfied.

Developers could express their tasks and various dependen-
cies while allowing a library to schedule the tasks in parallel
while respecting the dependencies presented by the devel-
oper.

There are a number of scheduling libraries that supply the
infrastructure for task-based computation. They all allow
the developer to concentrate on the details of the algorithm
while a runtime system schedules the tasks in parallel. The
user never has to explicitly schedule a task or move the nec-
essary data for each task. While this certainly makes the
development of parallel software easier, it also obfuscates
when and where the tasks are executed.

Execution trace visualizations have been employed to pro-
vide users and developers a greater understanding of their
software. However, these tools are relatively static and can
be improved for the workloads of task-based schedulers. The
visual information-seeking mantra of “overview first, zoom
and filter, then details on demand” [24] certainly applies to
trace visualizations. The work presented here extends the
current methods to provide users with more “details on de-
mand” about their computational workloads.

The paper is organized as follows: Section [2| presents back-

ground information about data movement, task-based schedul-

ing, and current trace visualization methods. Section |3| de-
scribes the new visualization technique and how it is imple-
mented. Section[d]shows a few examples of the tool and why
it is useful for software developers. Finally, Section [5| dis-
cusses potential questions which may be addressed in future
work.

2. BACKGROUND AND RELATED WORK
2.1 Data Movement

Data movement is expensive in terms of time and energy.
As a result, it is important for software developers to be
mindful of the data movement and communication patterns.
There are research and software development efforts which
intentionally avoid communication in order to optimize the
speed of computations |9]. Communication can generally be
classified as intra-node communication or inter-node com-
munication.

2.1.1 Inter-node Communication

Inter-node communication is the most obvious form of data
movement within a distributed memory system. This is the
movement of data from one node to another across the net-
work. Inter-node communication is also the most visible
form of communication to developers because they must
explicitly coordinate the movement from one node to an-
other. This communication is often implemented using ex-
plicit communication functions provided by a library such
as MPIL.

2.1.2 Intra-node Communication

Intra-node communication can be easily overlooked because
developers do not need to explicitly coordinate any intra-
node communication. This communication is transparently
provided to the developers by the hardware that moves data
through the memory hierarchy. This type of communication

should not be overlooked if high performance software is de-
sired. Non-uniform memory access (NUMA) machines are a
common type of shared memory machines. NUMA machines
have multiple CPUs and NUMA nodes. The memory ap-
pears to be uniform to the user but the underlying hardware
is responsible for providing the correct data from the correct
memory location. This means the time it takes a CPU to
access a segment of memory can vary based on the NUMA
node or CPU cache currently containing the requested data.
In practice, this means a computation performed using data
on the “other side” of the machine can take longer than if the
computation is performed on the CPU closest to the current
location of the data.

2.2 Task-based Scheduling

Several software systems have been developed to focus on
task-based scheduling. Systems such as SMPSs, StarPU,
QUARK, PARSEC, and OpenMP 4.0 allow the developers
to define their algorithms in terms of a series of tasks. The
schedulers are generally classified as either task-superscalar
schedulers or dataflow schedulers.

Task-superscalar schedulers allow the developer to define
each task with input and output parameters. The scheduling
library uses the order of the task definitions in conjunction
with the input and output parameters to determine task de-
pendencies. These dependencies are used to build a directed
acyclic graph (DAG) of dependencies. The underlying run-
time then uses the DAG to schedule the tasks across the
resources while respecting the dependencies inferred based
on the input and output parameters for each of the tasks.

SMPSs [8, 20} 19} |6l |5, |15} 22], StarPU [1, |3} 2], QUARK [18],
and task-based scheduling in OpenMP 4.0 are considered
task-superscalar schedulers. Several of these have extensions
allowing them to support distributed workloads. However,
the inherent bottleneck of unrolling the DAG and scheduling
the tasks has limited the scalability of this solution. This
means this class of schedulers is primarily used in the con-
text of shared memory systems.

PARSEC [10], however, is a dataflow scheduler requiring ex-
plicit dependencies from the developer but it provides much
greater scalability. The computation is represented in a job
description format (JDF) file defining the tasks and depen-
dencies in a compact format. This format allows the run-
time to determine dependencies without unrolling the entire
DAG. The ability to determine dependencies independently
makes the runtime far more scalable. PARSEC provides
the underlying scheduling and runtime for a scalable dense
linear algebra library called DPLASMA.

2.3 DAG

Task-based schedulers ultimately rely on the dependencies
between tasks. Whether the developer explicitly states the
task dependencies or the scheduling library infers them, the
data dependencies must be observed in order to ensure accu-
rate computation. These dependencies are often represented
by a DAG.

Figure [1| shows the DAG for a small linear algebra problem
that only has 55 tasks. Each vertex in the graph represents
a task and is depicted in the figure by an oval. (Each oval

Figure 1: This graph is an example of a small DAG
from a numerical linear algebra application. The
tasks are labeled and colored by class and each arrow
represents a data dependency.

is labeled with the type of task it represents.) Each of the
edges in the graph represents the dependencies that must be
observed when scheduling the tasks. The data set produced
by a small numerical linear algebra algorithm from the the
PLASMA library was used to generate Figures[I} 2] [B] and
The algorithm was executed on a single 8-core CPU. This
small problem size was selected to illustrate the underlying
structure of the problem rather than a real world applica-
tion. Larger, more realistic problem sizes are used later in
the paper.

The SMPSs, StarPU, PARSEC, and QUARK libraries gen-
erate the DAG in a DOT file which can be used by many
applications and libraries to visualize and interact with the
DAG. Figure[f]was produced from the execution of the work-
load using QUARK. The resulting DOT file was visualized
using the GraphViz toolkit.

The TEMANAJO project also aims to visualize the task
dependency graphs for task-based parallel computing. The
project gives the developer a visualization of the dependen-
cies but it is primarily used for debugging.

2.4 Trace

Execution traces have been used to visualize parallel com-
puting for many years. Figure [2] shows a trace for a small
problem. (This is the same problem used to create the DAG
in Figure|l} The same color scheme is used for the tasks in
the DAG as well as the trace.) The workload was executed
on 8 cores of a shared memory system. The x-axis is used to
depict the time (in milliseconds) while each row is used to
represent a single core on the system. Each of the rectangles
represents one of the tasks comprising the parallel workload.
The rectangles in this figure are colored to convey the type
of task represented. However, the color and texture of the
boxes can be used to depict any number of task properties.

Unfortunately, the wide variety and complex interoperabil-

0 I .
! I e
: Il NS = =
¢ IIEEE B
R NN e
¢ 1 IHEEE
(. | |
5 10 15

Time (ms)

25 30

Figure 2: This is an example of a trace from the
same numerical linear algebra application in Fig-
ure [II The tasks are colored to match the task
classes in Figure

ity of trace collection, analysis, and visualization tools make
it difficult to accurately describe the landscape of the field
briefly. There are several trace collection tools producing
intermediate data formats which can often be converted to
use a variety of analysis and visualization tools to analyze
the execution trace.

SLOG-2 and Jumpshot were developed at Argonne Na-
tional Laboratory for trace collection and analysis. The fo-
cus of the work was to provide a file format and viewer that
could scale to very large trace sizes. The trace information
is stored in the file hierarchically which provides efficient
access to any portion of the trace.

The TAU performance system focuses on providing an
instrumentation toolkit (Program Data Toolkit or PDT)
that collects the event data. TAU also provides ParaProf
and PerfExplorer for detailed analysis and visualization of
many of the performance characteristics of an algorithm.
The tracing information can also be converted to a vari-
ety of common formats for viewing with several event trace
viewers.

Researchers at the Barcelona Supercomputing Center have
also developed an ecosystem of tools for collecting and an-
alyzing event trace data. Extrae is used to instrument
a parallel program and collect the event trace. Paraver [21]
is used to visualize the trace while Dimemas [7] is used to
manipulate it and simulate execution under a variety of con-
ditions.

EZTrace was built on top of the Generic Trace Gener-
ator library which is capable of producing various trace
file formats including Open Trace Format (OTF) and Pajé.
These traces can be viewed with the ViTE trace viewer or
Vampir.

Arguably the most common trace viewer and analysis toolkit
in the field is Vampir. This viewer has the ability to view
trace files in Open Trace Format (OTF) or OTF2 which
can be collected using a variety of instrumentation toolkits.
Vampir also provides a number of features and tools allowing
the developer to interact and analyze the event trace .

Finally, the PARSEC project has implemented an em-
bedded execution data collection framework creating a bi-
nary file with a variety of performance information including

an execution trace. The data in the PARSEC Trace Table
(PTT) can be read and analyzed using a Python library or
converted to a Pajé trace file which can be viewed using
ViTE.

3. VISUALIZATION DESIGN

/48—

15 20 35
Time (ms)

Figure 3: This trace is identical to Figure |2| except
all of the dependencies from Figure [1| are drawn us-
ing black lines. This demonstrates how quickly the
dependencies can overwhelm the user.

The concept of visualizing communication in an execution
trace is not new and has been implemented in many trace
environments. However, the current methods can be im-
proved. The current tracing methods often instrument the
code automatically for the user. Each invocation of a func-
tion is recorded with a starting and stopping time as well
as information about the computational element perform-
ing the computation. In the context of an MPI program,
it is also possible to instrument all of the communication
functions. The communication functions are traditionally
represented with a line between the two nodes on the execu-
tion trace. This depiction clearly communicates that data
movement has occurred, but it is often overwhelming to the
user.

This communication visualization method is perfectly suited
for software which uses MPI because each time the program
moves data it must call an MPI communication function
that can easily be tracked. In a shared memory setting,
however, this methods breaks down. There is no communi-
cation function which can easily be instrumented to log data
movement. The user must have knowledge of the algorith-
mic structure and what data movement must occur. It is
hard to know exactly how the data transfer takes place but
it must occur in order for the computation to continue. The
task-based schedulers can provide information about where
the computations happen and where the data was before it
was performed.

It should be noted that a dependency between tasks implies
the later task must wait until the earlier task has completed.
This means the second task is waiting for some piece of data
from the earlier one. If these tasks are executed consecu-
tively on the same core or device, the data should already
be in cache and the communication cost should be relatively
low. On the other hand, if the tasks are performed on a dif-
ferent core, device, or node the scheduler must move data
across the memory hierarchy or communicate with another
node. As a result, when considering task-based scheduling,
a dependency implies the requirement of communication un-
less the tasks are computed on the same core. Even if the

tasks are computed on the same node it is possible data will
have to move through the memory hierarchy if the data has
been evicted from the processor cache.

Perhaps the most obvious way to depict the execution trace
and the task dependencies is to visualize the trace and the
DAG simultaneously. Adding interactivity with mouseovers
or mouseclicks would allow the user to select a task in the
trace which would also highlight the corresponding task in
the the DAG. The opposite could also be true. However, the
size of the DAG and trace quickly grow to extremely large
datasets which make it difficult for the user to comprehend
the information on a problem of any reasonable size. As a
result, the two visualizations needed to be combined into a
single visual representation.

The first version of the tool employed the depictions used
by many common MPI tracing tools. The tasks were repre-
sented using the same methodology as Figure 2] A simple
line between tasks, a common visual representation for MPI
communication, was used to represent the dependencies and
data communications required by the algorithm. This rep-
resentation, applied to the same data used in Figures [2[and
[[can be seen in Figure [3]

Figure [3| now shows all of the tasks and their dependencies
in one visual space. However, even for small problems the
number of dependencies quickly overwhelms the user. The
visual “hairball” shown in Figure [3] can be greatly improved
by making the dependency lines an interactive feature.

Figure [4] demonstrates a visualization of the small problem
presented earlier, but with interactive features. Without
having the mouse hover over any of the tasks in the diagram,
the users sees a trace that looks identical to the trace in
Figure[2] When the users moves the mouse over one of the
tasks, however, the trace highlights the task as well as the
tasks for which it is waiting. It also highlights any tasks that
are waiting for it to complete. The tasks are also connected
to the task in focus to represent the dependencies. In terms
of the DAG, each of the lines represents the edges that are
connected to the highlighted task. Lines connected to tasks
earlier in the trace are edges directed into the highlighted
node. Conversely, lines connected to tasks in the future
represent edges leaving the highlighted node in the DAG.

Many of these features can be configured to allow the user
to adjust the behavior of the visualization. For example,
the user may want to only highlight (add a black border to
the task) dependencies without drawing the lines. The user
may want to only show the tasks in the past or only show
the tasks waiting in the future. The user may also want to
see tasks more than one step away from the task in focus.
These are all features the user can configure in order to make
the visualization useful.

3.1 Implementation

In order to create the visualization, two separate data sets
must be combined. The first data set is from the execu-
tion trace. This data generally contains information about
each task including when the task started, when the task
ended, on what core it executed, and likely the type of task.
This data set may also contain other information about the

Core

0 5 10 15

20 25 30 35

Time (ms)

Figure 4: This trace demonstrates the basic interactivity of the software. The user has selected the red task
in the middle by placing the cursor over it. The trace highlights the dependencies on either side of that task
with a black border and a line to depict the dependency.

task. For example, the code may be instrumented with PAPI
counters which collect information about cache misses or in-
struction counts.

The second data set is the DAG of tasks and dependencies.
QUARK and PARSEC currently provide the DAG for the
workload in a DOT file. This information can be used to vi-
sualize the DAG using any number of software libraries. The
file can also be parsed to identify the dependencies (edges)
of the graph.

The challenging part of combining these data sets is find-
ing the tasks in the execution trace corresponding to each
of the nodes in the DAG. The earlier discussion about trac-
ing collection and storage utilities highlights the challenge
of dealing with data produced by different schedulers and
instrumentation libraries. The code currently supports data
from QUARK and PARSEC, although it could be extended
to support various other data formats and schedulers in the
future.

QUARK provides a task id that is unique for each task in the
execution. The task id is included in each node of the DOT
file that contains the DAG representing the computation.
The trace was collected by instrumenting each task with a
start and stop time stamp as well as the corresponding task
id. Once the two files are produced, the tasks in the DOT
file are matched to the corresponding tasks in the trace.

PARSEC, however, automatically collects and records all of
the necessary data to match tasks from the DAG with tasks
from the trace. The DAG is collected in pieces on each node
and post-processed to generate a single DOT file. The trace
is collected in the PTT file discussed earlier. The distributed
nature of the PARSEC execution makes it difficult to have
a single task id that is unique for each task. Therefore,
each task has three id properties (hid, did, and tid) that
combine to create a unique identifier for each of the tasks.
The three ids are present in the DOT and PTT files created
by PARSEC and are used to match the tasks from the two

data sets.

There is no standardized method for uniquely identifying
tasks in a trace or DAG at this time. In order to port this
method to the data provided by other schedulers, the user
must be able to uniquely identify tasks in the trace as well
as the DAG.

The visualization is implemented as a client-server architec-
ture. The server is implemented in Python while the client is
implemented using Javascript. The Python server is better
suited to do the heavy computational tasks and perform-
ing various analytical tasks. Javascript (and associated li-
braries) are well suited for making interactive visualizations.

This architecture also gives developers a flexible way to im-
prove, adjust, and expand the capabilities of this system.
The next section will demonstrate one such extension using
a kernel density estimation (KDE) plot in conjunction with
the trace visualization.

4. APPLICATION & ANALYSIS

The visualization method presented in section |3| can be ap-
plied independently like the example in Figure [but it is
also possible to employ this technique in conjunction with
other data visualization techniques. Figures[f]and [f] present
two examples of the visualization library applied to a real
world problem while demonstrating how it can be used.

Figure [5| demonstrates the new trace visualization on the
same linear algebra application presented earlier. However,
this example uses a larger problem size which more closely
resembles a real world problem. The tasks in the trace have
been colored based on their relative speeds. Tasks colored in
white are close to the average for a particular class of task.
Blue tasks are slower than average and green tasks are faster
than average. The intensity of the color is scaled based on
how far the runtime is from the average. This representation
allows the user to quickly determine which tasks are slower
or faster than average. There are several blue tasks at the

i - : 1 1 1 | .
5 —= - : =
:li { L - 1 L 1
10 [T | - jﬁ I;I 1 T | I I:ll
Ll - =1 a
15 | :l: 1 | m—
1 1 1 . Jl; —
20 1 . —) I - =t
— [
825 - — —
— L
30 q: — I
1| BT T 1T |
=
35
40
. - = !
45 [
0 50 100 150 200 250 300 350 400 450 500
Time (ms)
Task ID: t3278
Kernel Type: 4
Execution Core: 31
Time: 4233 ms
Task Z-score: -2.366

2 3 4 5 6 7 8 9 10

Figure 5: An example of the trace utility applied to a linear algebra workload. The tasks are colored based
on their relative speeds.

200 250
Time (ms)
Task ID: t7001
Kernel Type: 2
| Execution Core: 9
Time: 5.192 ms
Task Z-score: 2.631

20 25 30 35 40 45 50 55 60 65 70 75 80

Figure 6: An example of the trace utility applied to a linear algebra workload. The KDE plot was used to
highlight tasks in the trace based on execution time.

beginning of the trace. This is likely due to library and data
initialization costs at the start of the algorithm.

Several of the tasks near the end are green indicating they
are faster than average. It is likely this is caused in part
by the smaller number of tasks being executed and the re-
sulting reduction in memory contention. By selecting one
of the brightest green tasks, the visualization also shows the
user the data dependencies all come from the same CPU.
Therefore, the data is likely to be in cache instead of the
main memory or the cache on another chip. As a result, the
data movement is likely to be much faster than other tasks.

The plot at the bottom left shows four KDE curves for the
four types of tasks. The red KDE curve is highlighted which
indicates the selected task is part of this density estimator.
The black vertical line indicates where the selected task falls
in relation to the distribution of task times. In this case, the
selected task is likely one of the fastest of its kind.

One of the elements of the visual information-seeking mantra
is the ability to filter the data and make it easier to focus on
information deemed most interesting by the user. Figure |§|
demonstrates how the KDE plot can be used to highlight
tasks in a specific range with a filter based on execution
times. In this case, the user is interested in the relatively
slow tasks. The tasks in the trace which have execution
times falling within the range of the gray box on the KDE
plot are highlighted, while the others tasks have been ob-
scured by a reduction in opacity.

The user has selected an orange task in order to determine
why it was relatively slow. The visualization shows two de-
pendencies for the selected task. One is on the same core
while the other is on another CPU. However, closer inspec-
tion reveals two other tasks were executed on the same core
between the two tasks linked in the trace. Thus, the data
from the dependency has likely been evicted from the cache.
As a result, the task likely had to load two dependencies
from memory or another CPU which caused an increase in
task execution time.

The new dependency visualization technique is intended for
people who develop task-based schedulers as well as the de-
velopers who use them. The developer of a scheduler can
use this method to evaluate the performance of it and de-
termine if it is performing as intended. Developers using a
task-based scheduling library to parallelize their application
can also use the visualization to guide their use of extended
task information such as locality hints and task priority that
are available in some of the schedulers.

S. FUTURE WORK

There are several ways this work can be expanded upon
in the future. The most obvious would be support for more
schedulers and data formats. This will likely require collabo-
ration with the developers of the other task-based schedulers
in order to determine whether the DAG and trace informa-
tion is available and can be joined.

While this technique scales to several thousand tasks (com-
putationally and visually), it is not capable of displaying
enormous traces. The largest trace tested was approximately

90,000 tasks which truly pushed the rendering capabilities
and human understanding of the data set. Even if larger
data sets can be rendered, they may contain too much in-
formation for the user to comprehend. For example, a trace
with several million tasks across hundreds or even thousands
of multicore nodes provides too much data for the user to
mentally process or render. New methods for aggregating
trace data will be necessary to give developers a higher level
overview of the trace than is currently available. In terms
of the visual information-seeking mantra, the overview of
trace visualizations must be improved to give a higher level
overview than is currently available.

The use of the KDE plot in a coordinated view shows how
the trace visualization presented in this paper can be used
in conjunction with other visual representations of the data
set. The development of other complementary representa-
tions will give the user the ability to filter the data set and
decrease the time spent searching for insights.

6. CONCLUSIONS

The work presented here has provided two primary contri-
butions.

Task-based scheduling provides rich data sets that
can be used to give developers a greater understand-
ing of the performance characteristics of their soft-
ware. The execution traces and the DAGs produced by
task-based schedulers have been available for many years,
but the two data sets have never been combined. This fusion
of data allows developers to access performance information
that is not available from each of the data sets individually.

Interactivity allows the user to access all available
trace data without being overwhelming. Figure [3]
demonstrates how quickly the tracing data sets can over-
whelm the user. By allowing the user to access dependency
information on demand, we have made the entire data set
available without the overwhelming visual “hairball” that
can occur when the dependencies are visualized simultane-
ously.

Task-based scheduling of computational workloads is going
to be an important part of the future of high performance
computing. The work presented here will provide developers
with improved tools for analyzing the performance charac-
teristics of their software.

7. ACKNOWLEDGMENTS
This work was supported by the National Science Founda-
tion under grant ACI-1339822 and the Department of En-
ergy under award #DE-SC00010682.

8. REFERENCES

[1] C. Augonnet and R. Namyst. A unified runtime
system for heterogeneous multicore architectures. In
Proceedings of the Euro-Par 2008 Workshops - Parallel
Processing, Lecture Notes in Computer Science, pages
174-183, Las Palmas de Gran Canaria, Spain, August
2008. Springer. [DOI: 10.1007/978-3-642-00955-6_22.

[2] C. Augonnet, S. Thibault, R. Namyst, and
P. Wacrenier. StarPU: a unified platform for task

http://dx.doi.org/10.1007/978-3-642-00955-6_22

[10]

[12]

[13]

scheduling on heterogeneous multicore architectures.
Concurrency Computat. Pract. Ezper., 23(2):187-198,
2011. DOI: 10.1002/cpe.1631L

C. Augonnet, S. Thibault, R. Namyst, and P.-A.
Wacrenier. StarPU: A Unified Platform for Task
Scheduling on Heterogeneous Multicore Architectures.
In Proceedings of the 15th International Euro-Par
Conference on Parallel Processing, Euro-Par '09, pages
863—874, Berlin, Heidelberg, 2009. Springer-Verlag.
C. Aulagnon, D. Martin-Guillerez, F. RuArl, and

F. Trahay. Runtime function instrumentation with
eztrace. In I. Caragiannis, M. Alexander, R. Badia,
M. Cannataro, A. Costan, M. Danelutto, F. Desprez,
B. Krammer, J. Sahuquillo, S. Scott, and

J. Weidendorfer, editors, Euro-Par 2012: Parallel
Processing Workshops, volume 7640 of Lecture Notes
in Computer Science, pages 395—403. Springer Berlin
Heidelberg, 2013.

E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta,

R. Mayo, and E. S. Quintana-Orti. An Extension of
the StarSs Programming Model for Platforms with
Multiple GPUs. In Proceedings of the 15th
International Euro-Par Conference on Parallel
Processing, pages 851-862. Springer-Verlag, 2009.

R. M. Badia, J. R. Herrero, J. Labarta, J. M. Perez,
E. S. Quintana-Orti, and G. Quintana-Orti.
Parallelizing dense and banded linear algebra libraries
using SMPSs. Concurrency Computat. Pract. Exper.,
21(18):2438-2456, 2009. DOI: 10.1002/cpe.1463.

R. M. Badia, J. Labarta, J. Gimenez, and F. Escale.
Dimemas: Predicting mpi applications behavior in
grid environments. In Workshop on Grid Applications
and Programming Tools (GGF8), volume 86, pages
52-62, 2003.

R. M. Badia, J. Labarta, R. Sirvent, J. M. Perez,

J. M. Cela, and R. Grima. Programming grid
applications with GRID Superscalar. J. Grid Comput.,
1(2):151-170, 2003.

DOLI: 10.1023/B:GRID.0000024072.93701.3.

G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Minimizing communication in numerical linear
algebra. STAM Journal on Matriz Analysis and
Applications, 32(3):866-901, 2011.

G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge,

A. Haidar, T. Herault, J. Kurzak, J. Langou,

P. Lemarinier, H. Ltaief, P. Luszczek, A. YarKhan,
and J. Dongarra. Flexible Development of Dense
Linear Algebra Algorithms on Massively Parallel
Architectures with DPLASMA. In Proceedings of the
2011 IEEFE International Symposium on Parallel and
Distributed Processing Workshops, IPDPSW 11,
pages 1432-1441, Washington, DC, USA, 2011. IEEE
Computer Society.

S. Brinkmann, J. Gracia, C. Niethammer, and

R. Keller. TEMANEJO - a debugger for task based
parallel programming models. CoRR, abs/1112.4604,
2011.

A. Chan, W. Gropp, and E. Lusk. An efficient format
for nearly constant-time access to arbitrary time
intervals in large trace files. Scientific Programming,
16(2-3):155-165, 2008.

K. Coulomb, A. Degomme, M. Faverge, and F. Trahay.

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

[26]

An open-source tool-chain for performance analysis. In
H. Brunst, M. S. MAijller, W. E. Nagel, and M. M.
Resch, editors, Tools for High Performance Computing
2011, pages 37-48. Springer Berlin Heidelberg, 2012.
L. Dagum and R. Menon. OpenMP: An Industry
Standard API for Shared-Memory Programming.
Computational Science Engineering, IEEE, 5(1):46
-55, 1998.

A. Duran, E. Ayguade, R. Badia, J. Labarta,

L. Martinell, X. Martorell, and J. Planas. OmpSs: A
proposal for programming heterogeneous multi-core
architectures. Parallel Process. Lett., 21(2):173-193,
2011. DOI: 10.1142/S0129626411000151.

H. Gelabert and G. Sanchez. Extrae user guide
manual for version 2.2. 0. Barcelona Supercomputing
Center (B. Sc.), 2011.

A. Kniipfer, H. Brunst, J. Doleschal, M. Jurenz,

M. Lieber, H. Mickler, M. S. Miiller, and W. E. Nagel.
The vampir performance analysis tool-set. In Tools for
High Performance Computing, pages 139-155.
Springer, 2008.

J. Kurzak and J. Dongarra. Fully dynamic scheduler
for numerical scheduling on multicore processors.
Technical Report LAWN (LAPACK Working Note)
220, UT-CS-09-643, Innovative Computing Lab,
University of Tennessee, 2009.

J. M. Pérez, R. M. Badia, and J. Labarta. A
dependency-aware task-based programming
environment for multi-core architectures. In
Proceedings of the 2008 IEEE International
Conference on Cluster Computing, 29 September - 1
October 2008, Tsukuba, Japan, pages 142-151. IEEE,
2008.

J. M. Perez, P. Bellens, R. M. Badia, and J. Labarta.
CellSs: Making it easier to program the Cell
Broadband Engine processor. IBM J. Res. & Deuv.,
51(5):593-604, 2007. DOI: 10.1147/rd.515.0593.

V. Pillet, J. Labarta, T. Cortes, and S. Girona.
Paraver: A tool to visualize and analyze parallel code.
In Proceedings of WoTUG-18: Transputer and occam
Developments, volume 44, pages 17-31. mar, 1995.

J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta.
Hierarchical task-based programming with StarSs. Int.
J. High Perf. Comput. Applic., 23(3):284-299, 20009.
DOL: 10.1177/1094342009106195 |

S. S. Shende and A. D. Malony. The tau parallel
performance system. International Journal of High
Performance Computing Applications, 20(2):287-311,
2006.

B. Shneiderman. The eyes have it: A task by data
type taxonomy for information visualizations. In
Visual Languages, 1996. Proceedings., IEEE
Symposium on, pages 336-343. IEEE, 1996.

H. Sutter. The Free Lunch Is Over: A Fundamental
Turn Toward Concurrency in Software. Dr. Dobb’s
Journal, 30(3), 2005.

F. Trahay, Y. Ishikawa, F. Rue, R. Namyst,

M. Faverge, and J. Dongarra. Eztrace: a generic
framework for performance analysis. In Cluster, Cloud
and Grid Computing (CCGrid), 2011 11th
IEEE/ACM International Symposium on, pages
618-619. IEEE, 2011.

http://dx.doi.org/10.1002/cpe.1631
http://dx.doi.org/10.1002/cpe.1463
http://dx.doi.org/10.1023/B:GRID.0000024072.93701.f3
http://dx.doi.org/10.1142/S0129626411000151
http://dx.doi.org/10.1147/rd.515.0593
http://dx.doi.org/10.1177/1094342009106195
http://www.ddj.com/184405990
http://www.ddj.com/184405990

	Introduction
	Background and Related Work
	Data Movement
	Inter-node Communication
	Intra-node Communication

	Task-based Scheduling
	DAG
	Trace

	Visualization Design
	Implementation

	Application & Analysis
	Future Work
	Conclusions
	Acknowledgments
	References

