
Towards an Improved Data Centre
Simulation with DCSim

Michael Tighe, Gastón Keller, Jamil Shamy, Michael Bauer and Hanan Lutfiyya
Department of Computer Science

The University of Western Ontario
London, Canada

{mtighe2|gkeller2|jshamy|bauer|hanan}@csd.uwo.ca

Abstract—Computing is increasingly moving into large-scale

data centres, providing resources on-demand for clients on a pay-

per-usage basis. One form of such on-demand computing is an

Infrastructure as a Service (IaaS) Cloud, which provides low level

access to virtualized resources. Developing and evaluating data

centre management techniques for such large-scale data centres

presents a significant challenge. As such, most work turns to

simulation tools as the test environment. We present a number of

extensions and additional features to an existing simulation tool,

DCSim. Our improvements to DCSim include work on the core of

the simulator, improved event, communication and management

mechanisms, and a more complete model of the structure of a data

centre. We also present improved simulation configuration tools

and output, including a unique visualization tool. We evaluate

the usefulness of the simulator through a demonstration of its

use in comparing dynamic VM management techniques.

Keywords—Cloud, Data Centre, Simulator, Virtualization, In-
frastructure as a Service

I. INTRODUCTION

Computing is increasingly being moved into large-scale
data centres, providing resources on-demand for clients on a
pay-per-usage basis. One form of such on-demand computing
is an Infrastructure as a Service (IaaS) Cloud, which provides
low level access to virtualized resources. Virtualization allows
for multiple virtual machines (VMs) to be co-located on a
single physical machine (host), providing the ability to achieve
increased host utilization. By utilizing host resources as much
as possible, client workloads can be consolidated on the fewest
number of hosts possible in order to conserve power and
provide services to a larger number of clients. Resources,
such as CPU, can be oversubscribed to further increase host
utilization, but this comes with the risk of exhausting the
resources on a host, causing VM performance degradation. In
order to consolidate VMs to conserve power while providing
the resources VMs require to perform up to client expectations,
VMs must be dynamically managed. Dynamic VM manage-
ment, along with related topics in data centre management, is
a hot area of research.

The scale of data centres providing Cloud services contin-
ues to increase, with thousands to tens-of-thousands of servers
to manage. This presents a unique challenge to researchers
developing methods and algorithms for management, as the
scale of the target environment precludes the use of a phys-
ical testbed. As such, simulation is commonly used for the
evaluation of management techniques. Simulation also helps

researchers quickly evaluate and fine-tune algorithms at a
speed and scale not possible with a real implementation.

DCSim [1], [2] is a simulation tool for simulating a
virtualized data centre operating as an IaaS Cloud. To support
our current research [3] and planned future work, and to
provide tools that other researchers can leverage in their work,
we have developed a number of extensions and improvements
to DCSim. This includes work on the core of the simulator
to provide more flexibility, improved Event class structure
and mechanisms for event callbacks and sequencing, new
components to simplify the creation of management systems
and to model the communication between them, and a more
complete model of the structure of a data centre including racks
and clusters. We also introduce classes to help streamline the
creation of new experiments, new output options and metrics,
and a visualization tool to help provide a new perspective on
the behaviour of data centre management methods and sys-
tems. Finally, we continue to focus on providing an extensible
platform for researchers to extend to suit their own work. In
areas of DCSim that have not seen additional development,
we provide a more detailed explanation of its underlying
mechanisms.

The remainder of the paper is organized as follows: Section
II presents related work in data centre simulation, Section III
describes the architecture, core features and new additions to
DCSim, Section IV gives some detail on how to configure and
run experiments with DCSim, Section V provides an evaluation
of the simulator through a demonstration of its use, and Section
VI presents some conclusions and future work.

II. RELATED WORK

There are a small set of existing simulation tools available,
each with their own strengths, weaknesses, and target envi-
ronments. GreenCloud [4] is designed to evaluate the energy
costs of operating a data centre. It is a packet-level simulator
built as an extension to Ns-2 [5], and provides a detailed
model of communication hardware and power consumption
of each element of the data centre. It does not, however,
include modelling of virtualization. MDCSim [6] is designed
to simulate a large-scale data centre running a three-tiered web
application. It focuses only on evaluating the configuration of
each tier, measuring both power and performance metrics. As
with GreenCloud, it does not consider virtualization. Further-
more, it is built on a commercial product and is not publicly
available.

ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013 364

GDCSim (Green Data Centre Simulator) [7] aims to help
researchers fine-tune the interactions between management
systems and the physical layout of the data centre, including
thermal and cooling interactions with workload placement.
This tool does not consider multiple tenants of the data centre,
nor does it consider virtualization.

CloudSim [8] simulates a virtualized data centre, with
multiple clients operating VMs. However, it implements an
HPC-style workload, with Cloudlets (jobs) submitted by users
to VMs for processing. It can be manipulated to simulate an
interactive, continuous workload such as a web server [9], but
it lacks a real model of such an application. An extension of
CloudSim, NetworkCloudSim [10], considers communication
costs between VMs performing parallel computations, but
again focuses on HPC-style workloads rather than interactive
workloads. Additionally, our work on DCSim adds data centre
organization components such as racks and clusters not present
in CloudSim.

SimWare [11] targets the modelling of data centre cooling
and power costs, including the impact of server fan power
consumption as related to the temperature of the data centre,
and air travel time from CRACs to servers. Their simulated
client workload is based on traces of HPC systems, rather than
interactive applications.

DCSim [1], [2] models a virtualized data centre providing
IaaS to multiple tenants, with a focus on interactive workloads
such as web applications. It can model replicated VMs sharing
incoming workload, as well as dependencies between VMs
that are part of a multi-tiered application. It also provides
metrics to gauge SLA violations, power consumption, and
other performance metrics that serve to evaluate a data centre
management approach or system. Furthermore, DCSim is
designed to be easily extended, implementing new features
and functionality. This work presents new built-in features
for DCSim, as well as new modifications to the underlying
simulator to provide more flexibility for future extensions.

III. DCSIM ARCHITECTURE & COMPONENTS

DCSim is an event-based simulation tool, written in the
Java programming language. It is designed to be easily ex-
tended to include new features and functionality, so as to
support research in the area of data centre management. Figure
1 gives a high-level overview of the basic data centre model
implemented by DCSim. The remainder of this section outlines
the components and underlying mechanisms that drive DCSim,
as well as new features and improvements which have been
recently added to the simulator.

A. Simulation Engine

As DCSim is intended to be a simulation platform that
can be extended to suit the needs of a particular area of
research, it is useful to take a look at the mechanism by
which DCSim advances through simulated time in order to
help gauge the feasibility of possible extensions. Furthermore,
we have enhanced the functionality of DCSim by adding a
post-scheduling hook whereby data centre components can
create new events or move existing events based on dynamic
resource scheduling. This allows the simulation of operations
and processes that exhibit variable runtime based on available

Fig. 1: Data Centre Model

resources. This feature is included primarily for the planned
future development of variable VM migration times (due
to changes in available network bandwidth), and batch/HPC
type jobs whose runtime is based on dynamically scheduled
CPU. Algorithm 1 outlines a simplified version of the main
simulation loop.

1: simTime = 0
2: while eventQueue not empty &&

simTime ≤ duration do

3: scheduleResources()
4: postScheduling()
5: e = peek(eventQueue)
6: simTime = e.getTime()
7: advanceSimulation(simTime)
8: updateMetrics()
9: performLogging()

10: while eventQueue not empty &&
peek(eventQueue).getTime() = simTime do

11: e = pop(eventQueue)
12: handleEvent(e)
13: end while

14: end while

Algorithm 1: Main Simulation Loop

The eventQueue contains all future events that must be
executed, simTime records the current simulation time, and
duration is the length of the simulation (in simulation time).
The outer loop is responsible for advancing in simulation time
to the next scheduled event(s). Changes to data centre state
only occur via events; in-between events, the state of the data
centre is static. The first phase of the loop uses the current
data centre state to schedule resources (line 3), in which an
allocation of resources/second for each VM is calculated (see
Section III-F). CPU scheduling is based on current application
demands, in a fair-share manner up to the maximum capacity
of the Host processor.

Next (line 4), data centre components get a chance to
create or revise future events based on the newly calculated

ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013 365

resource scheduling. We then check for the simulation time of
the next event (which may have changed based on processing
in postScheduling()), and advance the simulation to the time of
the next event using the calculated resource scheduling (lines 6
& 7). Simulation metrics are then updated (see Section IV-B)
and logging is performed. The inner loop (lines 10 to 13)
executes all events that take place at the current simulation
time. The process is then repeated to advance to the next set
of events.

B. Events

As DCSim is an event-driven simulation, all actions, op-
erations and state changes in the simulation are triggered by
an Event. Events are also used for communication between
data centre elements and management components. The basic
properties of an Event are the simulator component(s) that will
receive the Event, and the time at which to execute it. Events
are ordered such that, in the case of multiple Events being
executed at the same simulation time, they are executed in the
order in which they were sent. Any component can send an
Event to another component, or to itself in order to trigger
some functionality at a specific time in the future. The basic
Event class is abstract, with specific Event types implementing
any behaviour or storing any data they require.

There are a number of hooks and methods which can be
used to add additional functionality to an Event. Pre-execution
and post-execution methods can be implemented to perform
operations before and after the Event is executed, such as
logging Event details. An Event Callback can also be registered
with an Event, allowing one or more objects to be notified
once an Event has been executed. In some cases, an Event
can cause several other Events to be generated in order to
complete an operation, which may require the post-execution
and callback methods to be triggered only after the complete
sequence of Events has been executed. To accomplish this,
Events can be strung together in a sequence. For example,
instructing a Host (i.e., a server; see Section III-C) to boot up
involves one Event sent to the Host, and another Event sent by
the Host to itself some time later indicating the completion of
the operation (Hosts take time to boot). These Events are added
in sequence together, allowing a management component to
receive a callback only once the full boot up operation has
completed.

A special Event subclass, MessageEvent, can be used for
communication between components by extending it with any
additional functionality required. MessageEvent automatically
keeps track of the number of messages of each specific
subclass that are sent during the simulation. Finally, a special
type of Event, called the RepeatingEvent, can be used to trigger
repeated executions of the Event on a regular interval.

C. VMs, Hosts, Racks & Clusters

DCSim uses a series of abstractions to organize the ar-
chitecture of a data centre. These abstractions are VM, Host,
Rack, Cluster and DataCentre. In DCSim, a data centre con-
sists of a collection of clusters, each cluster being a collection
of racks, and each rack a collection of hosts. Both Cluster
and Rack are designed to be homogeneous collections (in
terms of their composing elements), but DataCentre may be
an heterogeneous collection.

1) VM: A VM in DCSim represents a virtual machine
running a single application. The properties and requirements
of a VM are defined in its VMDescription, which is used to
create an instance of the VM. The VMDescription defines the
number of virtual cores and the amount of CPU, memory,
bandwidth and storage resources requested. In its present state,
DCSim allocates memory, bandwidth and storage statically to a
VM, in the full requested amount (they are not oversubscribed).
CPU resources, however, do not need to be fully allocated,
allowing a host CPU to be oversubscribed. Once a VM is
created and started on a host, its CPU requirements are driven
dynamically by the needs of the application it is running (See
Section III-E for details on applications in DCSim).

In order to perform dynamic management of VMs in a data
centre, VMs must be moved from one Host to another using
VM Live Migration. VM Live Migration allows a VM to be
moved to another physical machine with minimal downtime.
DCSim supports simulating VM Live Migration, and calculates
the time to migrate a VM based on available bandwidth and
VM memory size.

2) Host: A host represents a physical machine in the data
centre, capable of running VMs. Its physical properties are
defined by the following set of attributes: the number of CPUs;
the number of cores per CPU; core capacity; memory capacity;
network capacity; storage capacity; and a power model. Core
capacity is defined in terms of CPU Units, where one CPU
unit is equivalent to 1MHz of processor speed (e.g., a 2.4GHz
processor has 2400 CPU units). The power model defines how
much power the host consumes at a given CPU utilization
level, and is calculated using results from the SPECPower
benchmark [12]. The resource utilization of the host at any
given time is calculated as the sum of the resources in use by
the set of VMs it is hosting (including its privileged domain).
A host can be in one of three states: on, off, or suspended.
VMs are only given resources to run their applications when
the host is in the on state. The host consumes some small
amount of power when in the suspended state, and no power
when off. Transition times between states can be defined in
the simulation configuration file.

3) Rack: A rack represents a collection of hosts in the data
centre. This collection is homogeneous; that is, all hosts in the
rack are of the same type. A rack has a given number of slots
that can be filled with hosts, and this number may vary between
racks. A rack counts also with two switches to which every
host in the rack is connected.

4) Cluster: A cluster represents a collection of racks in the
data centre. This collection too is homogeneous. The number
of racks per cluster is not fixed, so different clusters can have
different numbers of composing elements. The cluster also
contains two collections of switches, one for the data network
and one for the management network (more information on
networks in the next section).

D. Data Centre Network

In DCSim, a data centre has two different networks: a
data network and a management network. The first is used
to meet the communication needs of the hosted VMs, while
the second is used for the internal management of the data
centre. VM migrations make use of the management network

ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013 366

Fig. 2: Application Model

as do status update messages or migration requests exchanged
between management entities.

A network consists of nodes and edges, namely, Net-
workElement objects and Link objects. A Link has a certain
bandwidth capacity and it connects two NetworkElement ob-
jects. There are two types of NetworkElement: NetworkCard
and Switch.

Every Host has two network cards, one for each network.
These network cards are connected through links to their
corresponding switch in the rack (two switches per rack, one
per network). At cluster-level, two network arrangements are
possible: one, every rack in the cluster is connected to a single
switch (per network), which is referred to as main switch and
requires as many ports as there are racks in the cluster; and
two, there is a two-level hierarchy of switches (per network),
where racks are connected to low-level switches and low-level
switches are connected to a single high-level switch (referred to
as main switch). At data centre-level, there is a central switch
(per network) to which each cluster’s main switch is connected.

E. Application Model

Each VM in DCSim runs a single Application. The Ap-
plication determines the current resource requirements of the
VM, and records whether or not these requirements have
been met. Application is an abstact class, extended to model
different types of applications, such as interactive applications
and batch/HPC style jobs. At present, DCSim has only an
interactive application model (such as a web application),
although short-term future work includes the addition of a
batch/HPC application model.

In the interactive application model (Figure 2), we define
a Service as a set of one or more application instances
cooperating together to provide a specific service to a set of
clients, coupled with a Workload component which defines the
current (dynamic) level of incoming workload (i.e. requests).
A Service is composed of at least one Service Tier. We define a
Service Tier as a set of identical Application instances, running
each within their own VM, which split incoming workload
via a Load Balancer element. Multiple Service Tiers within
a Service are ordered, whereby the amount of work being
completed by one tier is used as the input level for the next
tier.

The Workload component defines the level of incoming
work at any given time in the simulation, akin to requests per
second. The Application uses this incoming workload level

to calculate the amount of CPU resource it requires, which
is calculated linearly using a specified number of CPU units
required per unit of work. Changes in incoming workload level
can be generated randomly, or can be driven by a trace. A
trace specifies normalized workload levels in the range of [0,
1] at regular time intervals. We have generated a set of trace
files based on freely available web server traces. We divide
the original trace into equal length segments (120 second
intervals), and total the number of requests received in each
interval. We then normalize the values of each interval. The
normalized traces can then be scaled by the Workload to any
size required. The Workload component dynamically adjusts
the workload level by scheduling simulation Events to update
the workload level for each change specified in the trace.

It may be the case that a VM does not receive the CPU
resources it requires in order for its Application to meet the
demand of the incoming workload. This occurs when the host
is overloaded and its CPU has reached capacity. If the VM does
not receive the required CPU resources, it calculates how much
work it can perform with the given CPU resources, and records
the percentage of work that could not be completed as the
SLA Violation percentage (see Section IV-B). In the case that
the Service Tier to which the under-provisioned Application(s)
belongs is serving as input for a subsequent tier, only the
amount of work completed is sent as input for the next tier.

F. Resource Managers & Scheduling

Host resources in DCSim are managed by a Resource
Manager component on each Host. The Resource Manager is
responsible for allocating and deallocating resources for VMs,
keeping track of the total amount of resource allocated, and
deciding whether or not the Host is capable of running a given
VM. The Resource Manager is an abstract class and must
be extended to provide the desired functionality. The default
Resource Manager allocates memory, bandwidth and storage
statically, with no oversubscription. CPU is oversubscribed,
allocating to VMs as much CPU as they request, although
they may not actually receive it if the Host CPU becomes
overloaded.

While the Resource Manager handles allocations, the Re-
source Scheduler handles the scheduling of dynamic resources,
such as CPU, based on current demand. At present, the
Resource Scheduler schedules only CPU, although it could
be extended to dynamically calculate usage of other resources
as well, such as bandwidth. Other resources are simply given
their full allocation, as determined by the Resource Manager.
During the schedule resources phase of the simulation loop
(see Section III-A), the Resource Scheduler for each Host
calculates the amount of resources/second that each VM is
given. In the case of CPU, this would be the number of CPU
units given to each VM. It does so in an fair-share manner,
giving each VM a chance to receive an equal amount of CPU,
up to the total CPU required by its application at the current
time. CPU not used by one VM can be used by another,
and any CPU amount required by a VM over and above the
capacity of the Host is not scheduled, resulting in application
performance degradation.

Since the incoming workload for a VM may be determined
by the resources allocated to another VM in the data centre

ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013 367

(i.e. in multi-tiered Services), the full set of VMs are first
sorted such that if VM b receives its incoming work from VM
a, then a will be scheduled first. The ordered list of VMs is
then scheduled in rounds. Once the scheduling is complete, the
resulting division of resources is used to calculate the amount
of processing completed over a period of simulation time in
the advance simulation phase of the simulation loop.

G. Autonomic Managers & Policies

Our development of DCSim is focused on providing tools
to support research on virtualized data centre management. The
Autonomic Manager (AM) and related components provide a
framework to allow quick development of new management
systems, while taking care of some of the messaging and event
handling details of DCSim automatically. The AM acts as a
container for a set of Capabilities and Policies. A Capability
is simply an object that stores data and provides methods for
use in one or more Policies. For example, the HostManager
Capability provides a reference to a host that is managed by
an AM possessing the capability. This can be used by a Policy
that is designed to manage a host in the data centre. Policies
are installed into AM, and implement the actual management
logic. A Policy can only be installed in an AM that possesses
the Capabilities that the Policy requires to function.

Policies can be triggered on a regular interval, or can
respond to events sent to the AM by another Policy or
component. In order to design a Policy that executes on a
regular interval, we simply create a Policy class that de-
fines an execute() method, and pass the time interval to
the AM when installing the Policy. To trigger a policy on
the arrival of a specific Event class, we simply define an
execute(ConcreteEvent e) method, and the AM will
automatically detect that the Policy accepts these Events, and
call the Policy whenever one is received.

AMs do not need to be attached to any other component,
and can simply run detached from the physical data centre
infrastructure. However, they can also be attached to Host
objects, to indicate that the AM is running on that Host. When
this configuration is used, the AM will only execute when the
Host is in the on power state.

Within this framework, it is a quick and simple process to
define new Policies, Capabilities and Events to build a desired
management system or test a management algorithm.

H. Management Actions

Common management operations performed within a sim-
ulation can be encapsulated in a Management Action. DCSim
currently features Management Actions for instantiating a new
VM, migrating a VM, replicating a VM within a Service Tier,
and shutting down a host. Additional Management Actions can
be created by extending an abstract class. It is possible to build
a set of actions which can be executed either concurrently, in
sequence, or in combinations of the two. If a sequence of
Management Actions is executed, the preceding Management
Actions must complete before subsequent ones can execute.
This includes the case where some Management Actions, such
as VM migration, may take some time to complete.

I. Metrics

DCSim includes a mechanism for recording metrics of in-
terest in order to evaluate management systems and algorithms
through simulation. All metrics extend the Metric superclass,
and DCSim includes a number of specific Metric types as well
as some generic types to store basic types of values, such as
averages. Metrics can easily be added to the simulation in order
to collect any necessary data, most often with a single line of
code, and are automatically outputted at the conclusion of the
simulation.

IV. CONFIGURING AND USING DCSIM

In this section we describe some of what is required to
configure and run DCSim.

A. Workloads

As discussed earlier in Section III-E, the Workload com-
ponent is responsible for specifying a dynamic workload level
for Applications running in the simulated data centre. In our
simulations, we use normalized workload traces built from 5
real web server traces: the ClarkNet, EPA, and SDSC traces
[13], and two different job types from the Google Cluster
Data trace [14]. To ensure that VMs do not exhibit identical
behaviour, we always start the trace for each VM at a randomly
selected offset time.

In a data centre, the set of VMs is not static; VMs con-
tinuously arrive and depart the data centre. We have therefore
implemented a new feature in DCSim which dynamically adds
new Services (see Section III-E) to the data centre, which
are submitted by sending a VM Submit Event containing a
description of the Service to be instantiated in the data centre.
Services have a lifespan chosen randomly from a specified
distribution, after which they terminate. This helps model not
only changes in individual VM resource requirements, but also
changes in overall data centre utilization over the course of a
single simulation.

B. Default Metrics

DCSim provides a number of useful metrics in order to help
judge the performance of data centre management systems and
algorithms, including the following:

Average Active Host Utilization: The average CPU utiliza-
tion of all hosts that are currently in the on state. The higher
the value, the more efficiently resources are being used.

Max, Min, and Average Active Hosts: The maximum,
minimum, and average number of Hosts in the on state at
once.

Number of Migrations: The number of migrations trig-
gered during the simulation, by each management component
that triggers migrations.

SLA Violation (SLA V): The percentage of work that could
not be completed due to resource under-provisioning. This also
includes a migration overhead penalty of 10% of the current
incoming work applied to VMs during migration [15].

ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013 368

SLA Violation Duration (SLA Duration): The total amount
of time that all VMs spent in a state of SLA violation. For
example, if two VMs were each in SLA violation for 5
minutes, the SLA Violation Duration would be 10 minutes.

Power Consumption: Power consumption is calculated for
each host, and the total kilowatt-hours consumed during the
simulation are reported.

Message Counts: The number of message sent, for each
subclass of MessageEvent used during the simulation.

Services: The number of new Services created and submit-
ted for instantiation to the data centre, the number of Services
that end during the simulation, and the number of Service
instantiations that fail due to inability to find a suitable host
for placement.

C. Performing Experiments with DCSim

In order to make configuring and performing experiments
with the simulator as clean and easy as possible, we added
a set of new helper classes for performing simulations. The
SimulationTask class encapsulates a single simulation con-
figuration, allowing the user to configure the simulator by
implementing the setup() method, while taking care of the
details of running the simulation automatically. Simulation
name, and duration can be specified, as well as a period of time
to wait before recording metrics. Finally, a seed for random
number generation can be passed to the SimulationTask to
be used to generate any random elements, such as workload
configurations. This provides repeatable experiments, which is
convenient both for debugging and for comparing management
systems and algorithms. Once the SimulationTask has been
run, a collection of Metrics recorded during the simulation is
returned.

In order to run several simulations, either sequentially or
concurrently, SimulationTask objects can be added to a Sim-
ulationExecutor. The SimulationExecutor handles spawning
threads for individual SimulationTasks, waiting for all tasks to
complete, and returning the resulting Metric collections from
each SimulationTask.

D. Output & Logging

DCSim uses the logging library Apache log4j [16]. By
default, only basic output is printed to the console, with other
options available for more detailed logging (at the expense
of processing time required for logging I/O). The DCSim
configuration file contains several options specifying different
logging output:

Enable Detailed Console: This will cause detailed, human-
readable data on the execution of the simulation to be outputted
to the console. This includes data on each Host and VM
at every step in simulation, as well as data on management
operations such as VM migration.

Enable Console Log File: Console output will also be
written to a log file.

Enable Simulation Logging: Individual, detailed data on
the execution of the simulation (the same data as enabled
with the Enable Detailed Console option), will be written to a
separate log file for each SimulationTask run, even if several
SimulationTask objects are executed concurrently.

Enable Trace: This will enable a machine-readable ver-
sion of the detailed simulation data, for use in graphing or
visualizations.

E. Visualization Tool

When developing and evaluating data centre management
techniques, it can be extremely helpful to have a tool to
visualize what is happening within the simulated data centre.
We have developed a visualization tool that makes use of the
machine-readable trace output of DCSim to provide a set of
graphs describing the simulation run in detail. Furthermore,
it includes an animation, allowing the state of Hosts and
VMs in the data centre to be viewed as the simulation time
progresses. Host and VM resource utilization are presented,
and VM migrations and new instantiations are clearly shown.
This allows the researcher to visually see how a management
system or algorithm is operating, and to gain new insight into
its behaviour.

V. EVALUATION

In this section we demonstrate how DCSim can be used to
implement and evaluate a management system, and use three
different (though similar) management systems as working
examples. We first describe the elements of these management
systems (such as autonomic manager capabilities, policies, and
events), discuss the changes that were made from one system
to the next, and later compare the systems through simulation.

A. Data Centre Infrastructure

The target infrastructure consists of a collection of hosts
and a DataCentre abstraction that contains all of the hosts.
Each host has an associated Autonomic Manager (AM), as
does the data centre. In the next sections we will discuss the
capabilities of these managers and their associated policies.

B. Management Systems - Common Elements

Each host in the data centre has an AM associated with it.
This manager possesses a capability, namely HostManager,
that acts as a knowledge base for the manager, storing all
relevant management information that the policies may need
to successfully execute. One such policy is the HostMonitor-
ingPolicy, which upon invocation collects the current status
information of the host (resources in use or allocated, power
consumption, number of incoming and outgoing VM migra-
tions, etc.), packages the information in a HostStatusEvent
message, and sends the message to the data centre’s AM. The
HostMonitoringPolicy requires the HostManager capability, so
as to be able to access the host and collect the necessary status
information.

Another policy installed in every host’s AM is the Host-
OperationsPolicy. This policy defines the behaviour of the
manager upon receiving the events InstantiateVmEvent, Mi-
grationEvent and ShutdownVmEvent. These events trigger the
allocation of the resources requested for the VM in the host,
start a migration process, and stop and deallocate a VM,
respectively.

At installation time, the HostMonitoringPolicy is config-
ured to be triggered every 5 minutes. This behaviour is

ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013 369

achieved by creating a RepeatingPolicyExecutionEvent with
a periodicity of 5 minutes and specifying the host’s AM as
intended target. When the manager receives the event (once
every 5 minutes), it triggers the associated policy.

The data centre’s AM possesses the HostPoolManager
capability, which serves to store information about a collection
of hosts (in this case, all the hosts in the data centre). In the
following sections we will discuss the policies that are installed
in this AM.

C. Static Management System

The Static Management System allocates VMs in the data
centre according to their expected peak resource demand,
allocating to each incoming VM the total resources requested
at creation time and never modifying that allocation. This
is achieved through a single management policy, which is
installed in the data centre’s AM. This policy is a VM Place-
ment policy, which defines how to perform the mapping of
incoming VMs to hosts. Every time a VmPlacementEvent is
received, the data centre’s AM invokes the VM Placement
policy. This policy implements a greedy algorithm to place
the incoming VM in the first host that has enough resources
available to fit the VM without over-committing resources. If
one such hosts is found, then the search is terminated and
an InstantiateVmEvent is sent to the host. Otherwise, the VM
Placement fails and the client request is rejected. The policy
relies on the manager’s HostPoolManager capability to get
status information about all the hosts.

Another policy installed in the data centre’s manager is
the HostStatusPolicy. This policy is invoked every time a
HostStatusEvent is received. The policy stores the new host
status information in a data structure in the HostPoolManager
capability of the data centre AM.

D. Dynamic Periodic Management System

The Dynamic Periodic Management System maps VMs
into hosts based on their current resource needs. Resources
such as memory, bandwidth and storage are statically allocated
and never change, but the CPU is oversubscribed, therefore
allowing the system to map more VMs to a host than is
possible with the Static Management System.

Like the Static Management System, the VM Placement
policy installed in the data centre’s AM is invoked upon
reception of a VmPlacementEvent. This policy is similar to
the one used in the Static Management System, but since this
system leverages CPU oversubscription, the policy does not
require the hosts to have unallocated CPU for the incoming
VM, but the policy rather checks how much CPU is actually
in use in the host, and if there is enough CPU not in use, then
the VM can be mapped into the host. As mentioned before,
the system maps VMs into hosts based on the VMs’ current
resource needs. At creation time, the requested resources are
taken as the current resource needs of the VM.

By oversubscribing resources, the management system can
increase the resource utilization of the hosts, and therefore of
the data centre as a whole. However, this strategy increases
the risk of hosts becoming stressed. A stress situations occurs
when the combined demand of the VMs co-located in a host

exceeds the resource capacity of the host. When this happens,
one or more VMs have to be migrated to another host, so as
to free resources locally to satisfy the resource demand of the
remaining VMs.

The management system uses a VM Relocation policy to
determine which VMs to migrate away from a stressed host
and to choose a new host for the migrating VMs. The policy
is configured at installation time to run periodically every 10
minutes. When invoked, the policy first checks the set of hosts
to determine which, if any, are stressed. For each stressed
host, the policy follows a greedy algorithm to select VMs
for migration and to find target hosts in which to place the
migrated VMs.

The management system also uses a VM Consolidation
policy to periodically consolidate VMs in the data centre,
attempting to minimize the number of physical servers that
need to be powered on to host VMs. This policy is installed
in the data centre’s AM and is configured to be invoked every
hour. Upon invocation, the policy uses a greedy algorithm to
migrate VMs away of underutilized hosts and into hosts with
higher resource utilization. Hosts that are emptied of VMs are
then suspended or powered off, to conserve power.

The same HostStatusPolicy used in the Static Management
System is used here to process HostStatusEvent messages and
maintain up-to-date status information about the hosts in the
data centre.

E. Dynamic Reactive Management System

The Dynamic Reactive Management System is very similar
to the Dynamic Periodic Management System, except that
it triggers its VM Relocation policy on demand rather than
periodically. The VM Relocation policy itself is essentially the
same, with minor changes implemented to allow the policy to
run as frequently as required rather than periodically.

The Reactive system attempts to detect stress situations and
trigger VM migrations as soon as possible, so as to reduce the
SLA violations suffered by VMs co-located in stressed hosts.
In order to achieve this behaviour, a new HostStatusPolicy (i.e.
different from the corresponding policy from the Dynamic Pe-
riodic Management System) is necessary. This policy, known
as ReactiveHostStatusPolicy, is still invoked upon receipt of
a HostStatusEvent and is still responsible for updating hosts’
status information. However, once the status information of the
host associated with the event is updated, the policy issues a
VmRelocationEvent so as to invoke the VM Relocation policy.

Upon invocation, the new VM Relocation policy first
queries the VmRelocationEvent to obtain identification infor-
mation of the host whose status information was recently
updated. The policy then performs a stress check on the host. If
the host is stressed, the policy looks for VMs to migrate away
from the host and for target hosts to receive the migrated VMs.
If the host is not stressed, the policy terminates its execution.

F. Experimental Setup

The simulated data centre for these experiments consists of
200 hosts, divided equally between two types: small and large.
The small host is modelled after the HP ProLiant DL380G5,
with 2 dual-core 3GHz CPUs and 8 GB of memory. The large

ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013 370

Host Util. # Migs Power SLA V. SLA Duration Failed Placement
Static 46% 0 7221kWh 0.0% 0 24%

Periodic 80% 10261 5056kWh 0.109% 26.58 days 0%
Reactive 79% 12508 5121kWh 0.059% 15.42 days 0%

TABLE I: Management Systems Comparison

host is modelled after the HP ProLiant DL160G5, with 2 quad-
core 2.5GHz CPUs and 16GB of memory. The different types
of host have different power efficiency, which is calculated as
CPU capacity / power consumption at 100% utilization. The
power efficiency of the large host is 85.84 cpu/watt, while the
power efficiency of the small host is 46.51 cpu/watt.

We use three types of VMs in these experiments. The small
VM requires 1 virtual core with 1500 CPU units (minimum),
plus 512MB of memory. The medium VM requires 1 vir-
tual core with 2500 CPU units (minimum), plus 512MB of
memory. The large VM requires 2 virtual cores with 2500
CPU units each (minimum), plus 1GB of memory. These
descriptions correspond to the resource requirements of the
VMs at creation time. Once a VM is running in the data centre,
further placement and allocation considerations are made based
on the actual resource usage of the VM. These experiments
include an equal number of each type of VM.

The experiments are configured to create 600 VMs in the
first 40 hours of simulation. These VMs remain throughout the
entire experiment, so as to maintain a minimum level of load in
the data centre. In the third day of simulation, new VMs begin
to arrive; they do so at a changing rate and last for about a
day. The total number of VMs in the data centre changes daily,
using randomly chosen values uniformly distributed between
600 and 1600. This second set of VMs provides for a dynamic
load in the data centre.

We use the term workload pattern to refer to a randomly
generated collection of VM instances with arrival, departure,
and trace offset times. A workload pattern can be repeated by
providing the random seed with which it was first generated.

G. Results

We evaluated the three proposed management systems
through simulation using DCSim. We generated 10 different
workload patterns and evaluated each management system
under each of these workload patterns. The experiments lasted
10 simulated days, though only the last 8 days of simulation
were recorded; the first 2 days were discarded to allow for the
system to stabilize before recording results. Table I presents
the results for each management system, averaged across the
different workload patterns.

We can see that the Static Management System achieved
the lowest Host Utilization by far, which translated also into
the highest Power Consumption. However, given that VMs
are statically allocated their total resource request (enough
to meet their peak demand), the management system avoids
SLA Violations completely. It should be noted, however, that
such a conservative approach to resource allocation resulted in
an elevated percentage of Failed Placements, while the other
management systems were able to accept every VM creation
request.

Both Dynamic Management Systems achieved similar re-
sults, with Periodic showing slightly higher Host Utilization
(and therefore less Power Consumption) and Reactive lowering
SLA Violation and SLA Duration by about 40%. However,
Reactive’s reduction of SLA Violations was achieved by
triggering VM migrations as soon as hosts became stressed,
which resulted in a 20% increase in the total number of VM
migrations issued.

VI. CONCLUSIONS AND FUTURE WORK

Developing and evaluating data centre management tech-
niques on the scale that they are ultimately required to perform
at presents a significant challenge. As such, most work turns
to simulation tools for their experimentation. We present a
number of extensions and additional features to an existing
simulation tool, DCSim [1], [2]. DCSim simulates a virtualized
data centre, operating an IaaS Cloud, which allows researchers
to quickly evaluate and fine-tune management algorithms at
a speed and scale not possible with a real implementation.
Our improvements to DCSim include work on the core of the
simulator, improved Event, communication and management
mechanisms, and a more complete model of the structure
of a data centre. We also present improved simulation con-
figuration tools and output, including a unique visualization
tool. Finally, we have presented an example use-case of the
simulator, comparing three different VM management systems,
to demonstrate the usefulness of the simulation results.

A number of additional features are planned for DCSim.
An HPC/batch style application model should be included, as
data centres typically host both interactive and HPC workloads.
The model for interactive applications could also be enhanced
to provide request response times for improved reporting on
SLA related metrics.

VM migrations are an important aspect to dynamic VM
management, and their overhead needs to be considered in
as accurate a manner as possible. We plan to include a
more detailed modelling of migration bandwidth, and the
impact of multiple simultaneous migrations on both migration
time and SLA metrics, using our new model of data centre
networking. Finally, the thermal state of the data centre should
be considered and used to calculate cooling costs, as cooling
power represents a significant cost for data centre operations.

ACKNOWLEDGEMENTS

We thank the National Sciences and Engineering Research
Council of Canada (NSERC) for their support.

REFERENCES

[1] (2013, May) DCSim project site. Distributed and Grid Systems
(DiGS) Research Group, Western University. [Online]. Available:
http://digs.csd.uwo.ca/

ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013 371

[2] M. Tighe, G. Keller, M. Bauer, and H. Lutfiyya, “DCSim: A data
centre simulation tool for evaluating dynamic virtualized resource
management,” in SVM Proceedings, 6th Int. DMTF Academic Alliance
Workshop on, Oct. 2012.

[3] G. Foster, G. Keller, M. Tighe, H. Lutfiyya, and M. Bauer, “The
Right Tool for the Job: Switching data centre management strategies
at runtime,” in Integrated Network Management (IM), 2013 IFIP/IEEE
International Symposium on, May 2013.

[4] D. Kliazovich, P. Bouvry, Y. Audzevich, and S. Khan, “Greencloud: A
packet-level simulator of energy-aware cloud computing data centers,”
in Global Telecommunications Conference (GLOBECOM 2010), 2010
IEEE, 2010.

[5] “Ns-2,” http://isi.edu/nsnam/ns/, Aug 2012.
[6] S.-H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. Das, “Mdcsim: A

multi-tier data center simulation, platform,” in Cluster Computing and
Workshops, 2009. CLUSTER ’09. IEEE International Conference on,
2009.

[7] S. Gupta, R. Gilbert, A. Banerjee, Z. Abbasi, T. Mukherjee, and
G. Varsamopoulos, “Gdcsim: A tool for analyzing green data center
design and resource management techniques,” in Green Computing
Conference and Workshops (IGCC), 2011 International, 2011.

[8] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Softw. Pract. Exper., vol. 41, no. 1, pp. 23–50, Jan. 2011.

[9] A. Beloglazov and R. Buyya, “Energy efficient resource management in
virtualized cloud data centers,” in Cluster, Cloud and Grid Computing
(CCGrid), 2010 10th IEEE/ACM International Conference on, 2010.

[10] S. Garg and R. Buyya, “Networkcloudsim: Modelling parallel appli-
cations in cloud simulations,” in Utility and Cloud Computing (UCC),
2011 Fourth IEEE International Conference on, 2011, pp. 105–113.

[11] S. Yeo and H. H. Lee, “SimWare: A Holistic Warehouse-Scale Com-
puter Simulator,” Computer, vol. 45, no. 9, pp. 48–55, 2012.

[12] (2013, May) Specpower ssj2008 benchmark. Standard Per-
formance Evaluation Corporation. [Online]. Available:
http://www.spec.org/power ssj2008/

[13] (2013, May) The internet traffic archive. [Online]. Available:
http://ita.ee.lbl.gov/

[14] (2013, May) Google cluster data. Google Inc. [Online]. Available:
http://code.google.com/p/googleclusterdata/

[15] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency
Computat.: Pract. Exper., pp. 1–24, 2011.

[16] (2013, May) Apache log4j. Apache. [Online]. Available:
http://logging.apache.org/log4j/

ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013 372

