
Guaranteeing Consistency between
Large Replicated Writable Disk Images

Sean Rooney Luis Garcés-Erice

IBM Research, Zurich Laboratory
8803 Rüschlikon, Switzerland

E-mail: {sro,lga}@zurich.ibm.com

Abstract—We describe a distributed protocol that guarantees
the consistency of multiple replicas of a given disk image
represented by a large file. The image replicas are used as
read/write caches for the primary disk image located at a
server. The protocol allows stale caches to be incrementally
invalidated minimizing the amount of data that must be copied
and recopied from the server. We prove that the protocol ensures
the consistency of the disk from the point of view of any client
using it, and we describe an implementation within an existing
streaming framework.

Index Terms—Migration, Protocol, Cache, Disk Image

I. INTRODUCTION

Storage devices have been growing in size, and filesystems
have followed supporting ever larger files. It is time consuming
to work with these files in a distributed environment where
the location of the file is required to change. For example,
users may store these large files on a private cloud but may
also require access to them when their portable computer is
not attached to the network. Simply copying these large files
back and forth is a very time consuming task, which may
be further hindered by low bandwidth available to mobile
workers. Virtualization is a primary example of applications
that benefit from support for large files. A virtual disk image
may be represented as one or more such files in some format,
e.g. VMDK.

Streaming solutions have been developed in which operating
system images can be executed on machines that are distinct
from that which they are stored [1].allow a remote disk to
be read and written across the network. Such a networked
disk abstraction allows operating systems to only copy across
the network those parts of the disk they actually access rather
than the entire disk, reducing considerably the time to start the
operating system. Streaming is useful when operating systems
are often migrated between machines [2], or used with thin
client desktops [3].

Caching the contents of the remote image disk on the
local storage of the machine on which the OS executes offers
benefits in terms of performance and scalability [4]. The cache
is persistent, allowing the OS to be restarted with a minimal
need for interaction with the storage cluster. In particular, this
reduces the synchronized start-up problem [3]. Moreover, if
the disk image is fully deployed to a client machine, that

machine can be temporarily disconnected from the storage
server allowing for example virtual machines to be executed
in circumstances where no network is available.

Over time, a given OS image may be migrated among
many different client machines. In particular, the OS may be
migrated back to a machine on which was already executed.
In such circumstances, the operating system should be able
to benefit from any blocks that have been cached on the local
storage and which are still valid. We describe a new distributed
cache invalidation protocol that allows this to be achieved.
The fundamental requirement of such a protocol is that the
disk image should always appear consistent to any operating
system using that image although the current valid state of the
image is distributed across the network. A disk I/O protocol
is consistent if the value returned from reading a disk sector
via that system is always the same as the last value written to
that sector via that I/O system. When reading/writing directly
to a disk the system can only be inconsistent due to hardware
failure. When reading/writing through a caching mechanism
we must ensure that writes cannot be lost within the cache
hierarchy. This is particularly problematic when the cache
itself is distributed especially when the virtual machines using
the cache may fail. The main contribution of this paper is the
proof that the presented protocol guarantees the consistency
of the disk from the point of view of distributed clients in a
system with many stale read/write caches.

II. PROTOCOL

Figure 1 shows an overview of the distributed disk cache
system. Many disks may be available at the storage server
and caches may exist for each of these at one or more clients.
All caches are considered stale expect for that of the client
currently using the disk. A sector is the basic unit in which a
disk is read or written, a sector is typically 512 bytes in length.
A disk may be considered as an array of sectors whose length
is the size of the image divided by the sector size.

In a streaming system, there is a reference disk located on
some storage infrastructure from which sectors are replicated
and stored locally. The local cache is a replica of the disk with
some additional information specifying whether the content
of a given sector has already been read from the reference
disk and is now available locally. It is also necessary to store

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper109

...

Storage Server

VM

Client 1 Client 2 Client 3 Client 4

Cache of Disk Currently in Use Old Disk Caches

Reference Disks

Fig. 1. Distributed Disk Caches

whether the sector content is “dirty”, i.e. whether it has been
written to locally and has not yet been flushed back to the
reference disk. Clearly only one client may execute a given
operating system instance at a given moment. We say that
the client has started a session with the operating system
and thereby opened the disk for use. A session identifier is
a monotonically increasing integer. At a given time the state
of the reference disk held at the server is given by:

s t r u c t {
S e c t o r [] d i s k ;
i n t s e s s i o n ;
i n t c l i e n t ;
i n t [] s e s s i o n W r i t t e n ;

} S S t a t e ;

Where disk is the representation of the disk, session is the
latest session, client is the identifier of the client that currently
is using the session or None if there is no client using that
disk, and sessionWritten contains the session in which a
given sector was last written to. At a given time the cache
state at a client is defined by:

s t r u c t {
i n t i d ;
i n t s e s s i o n ;
S e c t o r [] d i skCache ;
B i t [] d i r t y ;
i n t [] s e s s i o n C a c h e d ;

} C S t a t e ;

Where id is the unique client identifier and session is the
current session of the client. diskCache is the local cache
of the disk. dirty is an array of bits indicating whether a
sector has been written to but not yet synchronized with the
server, while sessionCached is the session in which a sector
was stored in the cache. For example, when a client reads
sector k for the first time from the server, diskCache[k] stores
the value read, while sessionCached[k] contains the current
session identifier session. If the clients writes to sector k then
dirty[k] is set to 1, until such time as the write is flushed from
the cache back to the server.

Having defined the state retained at the client and server
we now formalize what it means to open and close a
disk in Procedure 1 OpenRemoteDisk and Procedure 2
CloseRemoteDisk.

From the pre-condition and post-conditions of
OpenRemoteDisk it can be seen that opening a disk
essentially locks the disk for use by a given client. From
the pre-condition and post-condition of CloseRemoteDisk

Procedure 1 OpenRemoteDisk
procedure OPENREMOTEDISK(SState,CState)

Require: SState.client = None
Ensure: SState.client = CState.id ∧

SState.session′ = SState.session+ 1

end procedure

Procedure 2 CloseRemoteDisk
procedure CLOSEREMOTEDISK(SState,CState)

Require: SState.client = CState.id
Ensure: SState.client = None ∧
∀i CState.diskCache[i] = SState.disk[i] ∧
∀i CState.dirty[i] = 0

end procedure

it can be seen that closing the disk releases the lock. The
post-condition of CloseRemoteDisk also reveals that when
the disk is closed all writes must have been written to the
server.

Note that closing a disk does not change the state of the
client’s cache. This is retained on the local storage and may
be reused at some time in the future. Parts of this cache may
become invalid if another client performs a write on a cached
sector. If the old sector is retained with the cache then the
client’s disk is no longer consistent. It is necessary to remove
all elements in the cache that have been written in a session
more recent than the client’s last session. We describe the
invalidation process by Process 3 CacheInvalidation.

Process 3 Cache Invalidation
for i in CState.sessionCached do

if SState.sessionWritten[i] > CState.sessionCached[i]
then

CState.sessionCached[i]← None
end if

end for

In order to invalidate the read cache each client must know
whether and in which session a sector has been written by any
other client. This in turn requires that the server retains this
information. Hence synchronizing the client disk to the server
requires the procedure shown in Procedure 4 WriteRemote.

Procedure 4 WriteRemote
1: procedure WRITEREMOTE(SState,i,Data)
2: Write(CState.disk, i,Data)
3: CState.dirty[i]← 1
4: SState.sessionWritten[i]← SState.session
5: Write(SState.disk, i,Data)
6: CState.dirty[i]← 0

7: end procedure

Procedure 4 WriteRemote requires that lines 2, 3 are
performed in a single transaction and that lines 4, 5, 6 are
also performed transactionally. As lines 2, 3 are purely local
operations this is straightforward to ensure, however lines
4, 5, 6 require coordination between local and remote state.

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper110

Moreover for performance reasons the actual writing to the
server is performed asynchronously with respect to writing to
the local disk.

The server updates the SState.sessionWritten data struc-
ture each time a write on a given sector is performed. The
client needs to have access to this data structure in order to per-
form the invalidation procedure. It would be possible each time
a session is opened to pass the entire SState.sessionWritten
structure to the client and allow it to perform Invalidate
before the disk is used. The required data structure would
need one integer for every sector meaning that for a terabyte
disk we require 2× 109 integers, or 8 Gigabytes to be trans-
mitted. Increasing the scope of the SState.sessionWritten
structure from a single sector to a run of multiple sectors,
e.g. 256, would decrease the size of the structure at the cost
of unnecessarily invalidating more sectors. For example, our
terabyte disk would now require a SState.sessionWritten
of size 32 Megabytes and each time a write was performed
on a given sector a run of 256 sectors would be invalidated
Our expectation is that the SState.sessionWritten data
structure is highly compressible, as many sectors share the
same session number, for example after installing updates
during a given session all modified sector will have the same
session number. Standards compression methods, for example
gzip, that use sliding windows to identify frequently occurring
patterns and Huffman encoding to represent them, allow such
structures to be compressed/decompressed efficiently. How-
ever, in the worst case every sector has a random session
identifier and the structure is incompressible. This depends on
usage patterns, but the expectation is that in normal usage over
time SState.sessionWritten will become less compressible.
Assuming that to be the case then the time to open a disk
image would increase over its lifetime.

We adopt a different approach; instead of transferring the
entire data structure when the disk is opened, we can apply
the same principle described for the disk itself and stream the
SState.sessionWritten as and when needed at the client,
i.e. we represent the SState.sessionWritten data structure
as a streamable disk whose contents are meta-data. This means
that only what is actually used is transferred and the cost of
the transfer is amortized over the usage of the disk.

Procedure 5 ReadRemote
procedure READREMOTE(SState,CState,i)

x← ReadSessionWritten(SState, i)
if x > CState.sessionCached[i] then

CState.sessionCached[i]← None
end if
if CState.sessionCached[i] 6= None then

result← Read(CState.diskCache[i])
else

result← Read(SState.disk[i])
CState.diskCache[i]← result
CState.sessionCached[i]← x

end if
return result

end procedure

Given this, the procedure to read from a disk is presented in
Procedure 5 ReadRemote. Note that ReadRemote makes the
invalidation Process 3 implicit, as the invalidation takes place
dynamically as sectors are read from the reference image. Also
note that the results of the operation ReadSessionWritten
in ReadRemote can be cached themselves in a meta-data
cache. This means that once a part of the cache is checked
for validity from the server, all future accesses are local. This
meta-data cache itself is only valid during a given session,
i.e. it is completely emptied when the disk is closed.

III. PROOF OF CONSISTENCY

We define consistency of the disk in use by a client as a
read operation on any sector of the disk always returning the
last value ever written to that sector by any client.

We now prove that the operations described in Section II
ensure consistency. The proof proceeds by contradiction; first
let us assume the contrary i.e. that a write was performed on
the disk by a clienti but that write is not reflected later in the
state of the disk at clientj when that sector is read for the
first time.

From Procedure 1 OpenRemoteDisk and Procedure 2
CloseRemoteDisk we know that only one client has ac-
cess to the disk at a time and from the definition of
CloseRemoteDisk clienti must have written all data to the
server before clientj opened the disk. Saying that the write is
not available to clientj is the same as stating that for some k
which has not been written to by clientj in the current session:

Assumption 6 Consequence of Disk Inconsistency
ReadRemote(SState, CState, k) 6= Read(SState.disk[k])

Which from the definition of Procedure 5 ReadRemote is
equivalent to stating that:

Assumption 7 Consequence of Disk Inconsistency
CState.sessionCached[k] 6= None ∧
Read(CState.diskCache[k]) 6= Read(SState.disk[k])

If CState.sessionCached[k] 6= None then it must
have been read in a session previous to the last session
of clientj , but as it has been written in a later session
from the definition of ReadRemote the value returned must
be Read(SState.disk[k]) which contradicts Assumption 6.
Therefore the protocol ensures the property of consistency.

IV. IMPLEMENTATION

We assume that the streaming infrastructure is using
iSCSI [5], and the images are in raw format, that is they
are of fixed size. Use of other protocols or image formats
are possible, although implementation details would obviously
change.

In Figure 2 a streaming system is depicted with a client
using a local cache and the consistency protocol. Images are
stored on the server in the image repository. An Image Man-
ager entity exports the disk image and its metadata as iSCSI

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper111

Image repository

Image
Manager

Local disk

Server Client

OS
image SState

Caching
device

OS instance

S1

SN...
CState

diskCache

ISC
S

I
target IS

C
S

I
in

iti
ta

to
ra

b
c d

SSL tunnel

Fig. 2. A streaming system with local caching using the consistency protocol.

targets. On the client, the image is used through a caching
device that keeps a local cache of the sectors S1, . . . , SN of the
disk image. Sectors from the disk image are retrieved through
the iSCSI connection a©. The client state CState is updated
with the session information from the server state SState
through iSCSI connection b©. When the caching device tries
to read a sector not present in diskCache, ReadRemote
is used to update c© the CState; the sector is brought to
the client through a© and written d© to the diskCache. The
caching device also writes d© locally modified sectors to the
diskCache in the local disk. An example implementation by
the authors of a caching device is described in [4].

OpenRemoteDisk: The target is created when the client
calls OpenRemoteDisk. If the client has the right to access
the disk, OpenRemoteDisk creates a target.

CloseRemoteDisk: ensures that any dirty blocks are syn-
chronized back to the server and then removes the target.
Each individual update to the reference image is performed
transactionally.

WriteRemote: uses the standard iSCSI write oper-
ation except that the iSCSI server also updates the
SState.sessionWritten structure, conveniently implemented
using another iSCSI disk. At the server the iSCSI write
operation is mapped to writing the data on the primary disk
but also updating the meta-data.

Writes to the local disk are not synchronous with that of the
remote disk as this would be prohibitively slow. Instead during
the write the corresponding sectors are simply marked as dirty
within the client’s cache. Dirty sectors are flushed back to the
server by a separate process that runs concurrently with the
virtual machines. The process uses a two phase commit, in
which the data to be written is first copied from the local disk
to a journal and the sector is marked as clean. Only when the
write is confirmed on the server is the journal removed. The
journal is implemented using a simple file accessed in direct
mode i.e. without using any filesystem cache. Write operations
on the iSCSI disk are also synchronous, ensuring that the write
actually takes place in the server before updating the journal.
At any moment a given sector may be in one of three states:
dirty (has not been synchronized with the server), clean but in

the journal (is in the process of being synchronized with the
server), clean.

ReadRemote: is the operation used by the
caching device to read any sector of the disk. The
SState.sessionWritten structure is read using iSCSI
to check in SClient.sessionCached whether the local cache
is valid for that sector. SState.sessionWritten is typically
in the cache and the request is satisfied immediately from
RAM. The sector is returned directly from the local disk if
the cache is valid, otherwise it is read through iSCSI and the
local SClient cache is updated.

V. ANALYSIS

The cost at the server is the combined cost of the sectors
that are read and written. Assume furthermore that Rs blocks
of 4 KB are required to be read during the execution of the
operating system and Ws blocks are written. Then for a pure
streaming (ps) solution we have the following cost function:

Costps = Readcost(Rs) +Writecost(Ws)

Both a pure streaming system and streaming with disk
cache, benefit equally from the filesystem cache at the client
so we do not need to consider this in the analysis. The cached
streaming solution will reuse cached blocks that are still valid,
but needs to read the metadata associated with these blocks in
order to determine if they are valid. Assume an aggregation
of 8 sectors per entry in SState.sessionWritten, giving one
4 byte integer for every 4 KB of data. Written blocks are
stored on the local disk and only synchronized with the server
at some period in the future. Here for simplicity we assume
only a synchronization at the end meaning that only unique
blocks are written to the server within a given session. The
cost for the cached streaming (cs) system is then:

Costcs = Readcost(Rs − Rc) + Readcost(Rs/1024)

+ Writecost(Unique(Ws))

Where Rc are the reads satisfied by the local cache di-
rectly. If a disk is reopened at the same client without any
intervening execution on another client then the read cost is
Readcost(Rs/1024) for the cached streaming solution com-
pared to the Readcost(Rs) for the pure streaming solution.
More generally it can be seen that for reads, Costcs < Costps
if Rc > Rs/1024. For this not to hold the cache would
need to be completely ineffective, i.e., consecutive runs of the
operating system would need to use absolutely distinct disk
parts, even for booting, which is not realistic.

Increasing the aggregation in SState.sessionWritten
would decrease the metadata cost, but might also decrease
Rc, as more sectors get incorrectly invalidated.

VI. CONCLUSION

Disk images are an efficient way of archiving data and
applications together with a supporting operating system. We
have presented a simple protocol that allows cached copies of
a disk image on different machines to be reused, reducing both
the load on the server and the time required to synchronize
the changes back.

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper112

REFERENCES

[1] B. Madden, “A better way to manage Citrix servers: centralized block-
level disk image streaming,” Citrix White paper, March 2006.

[2] C. C. Keir, C. Clark, K. Fraser, S. H, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,” in In
Proceedings of the 2nd ACM/USENIX Symposium on Networked Systems
Design and Implementation (NSDI, 2005, pp. 273–286.

[3] C. Spencer and C. Black, “Streaming and virtual hosted desktop study,
benchmark results,” Intel White paper, January 2008.

[4] D. Clerc, L. Garcés-Erice, and S. Rooney, “OS Streaming Deployment,”
in Proceeding of IPCCC’10. Albuquerque, NM, USA: IEEE Computer
Society, December 2010, pp. 169–179.

[5] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner,
Internet Small Computer Systems Interface, Network Working Group
RFC, April 2004.

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper113

