
Classifying Server Behavior and Predicting Impact
of Modernization Actions

Jasmina Bogojeska∗, David Lanyi∗, Ioana Giurgiu∗, George Stark† and Dorothea Wiesmann∗
∗IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland, {jbo, dla, igi, dor}@zurich.ibm.com

†IBM Global Technology Services 294 Route 100 Somers, NY 10589, USA

Abstract—Today the decision of when to modernize which
elements of the server HW/SW stack is often done manually
based on simple business rules. In this paper we alleviate this
problem by supporting the decision process with an automated
approach based on incident tickets and server attributes data.
As a first step we identify and rank servers with problematic
behavior as candidates for modernization using a random forest
classifier. Second, this predictive model is used to evaluate the
impact of different modernization actions and suggest the most
effective ones. We show that our chosen model yields high quality
predictions and outperforms traditional linear regression models
on a large set of real data.

I. INTRODUCTION

The business climate in recent years has required IT service
providers to continually lower the cost of services delivery
while improving the delivery quality. Although IT service
delivery quality has many dimensions, system availability is
clearly the key metric. Consequently, because of its direct im-
pact on system availability, Incident and Problem Management
has received particular attention in the quest for ever higher
quality and lower cost. According to the IT Infrastructure
Library (ITIL), Incident Management is a discipline tasked
with restoring normal operations to a service when it has
been degraded or is down. Whereas the primary objectives
of Problem Management are to prevent problems and the
the resulting incidents from happening, to eliminate recurring
incidents, and to minimize the impact of incidents that cannot
be prevented [1]. However, recent innovations in Incident
and Problem Management include the additional objectives of
automatic classification of incident tickets for optimal routing
to the best resolution teams, aggregation of relevant system
information and similar incident tickets for faster root cause
analysis and tickets resolution, as well as optimal staffing of re-
solver teams [2], [3], [4], [5]. While root cause analysis across
similar incident tickets as part of a continuous improvement
lifecycle [5], may lead to the identification of troublesome
server configurations, none of the aforementioned approaches
systematically investigates the impact of server attributes and
their modernization on the level of incident tickets. In general,
while the drivers for different server modernization actions
are known, the process of deciding which action to apply
at which point in time is often manual and following simple
rules. For example, a number of reasons typically drive server
hardware refresh: increased risk of malfunctioning or end of
support of the old hardware as well as higher performance for
increased workloads, enhanced support for virtualization, and

lower power consumption of the new hardware [6]. Yet, while
the drivers are principally understood, most IT departments
still follow a fairly rigid strategy of replacing servers at three to
five years of age. In this paper we introduce a novel, automated
approach to selecting appropriate server modernization action
based on actual server behavior. Our method is adopting
the rationale underlying condition based maintenance and
predictive maintenance in asset-intensive industries, namely
to infer time and type of maintenance from the historic asset
monitoring signals. The contributions of this paper are: (1)
A Random Forest model that predicts from the server HW,
OS, and utilization properties whether the number of incident
tickets for this server exceeds a pre-defined threshold, thus
classifying the server as problematic. (2) The application of
the predictive model to evaluating the impact of modernization
actions for the problematic servers. While our model does not
include some of the more extrinsic modernization drivers, e.g.
decreasing power consumption of new server HW, it represents
a fundamental shift from rule-based maintenance towards a
modernization strategy based on actual and improved system
incidents after implementation of modernization actions. Our
approach thus offers businesses and IT service managers the
possibility of making smarter and more economical decisions.
The remainder of the paper is organized as follows: In Section
II we compare and contrast our approach with existing ap-
proaches to predictive maintenance and rejuvenation in related
fields. Section III describes the predictive model candidates
and the problem setting. The Experimental Section IV presents
the performance of the chosen Random Forest Model and its
usage to predict the impact of various modernization actions.

II. RELATED WORK

This section positions our work in the context of IT ser-
vice management. We identify three important directions that
contribute towards improving different levels of the SW/HW
stack: (1) incident and change request analysis, (2) predictive
maintenance, and (3) software aging analysis.

Incident and Change Request Analysis. In problem man-
agement, the current trend is to move from reactive solutions
to proactive strategies, where we seek to identify the cause
of incidents and define corrective actions in advance. Diao
et al. [2] propose a rule-base crowdsourcing classification
method thus facilitating root cause analysis of incidents and
failure trend monitoring. Compared to supervized learning
methods, their approach achieves higher accuracy especially

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP 59

when the cost of labeling incidents into failure classes is
high. Gupta et al. [3] propose a set of techniques for multi-
dimensional knowledge integration. Similar to [2], the authors
investigate incident classification, but use machine learning
to generate ticket failure classes. Further, they automatically
associate resources to tickets and collect system vitals through
monitoring tools, such as IBM Tivoli Monitoring [7]. The
appropriate incident resolution remains to be determined by
the system administrator based on the facts aggregated by
the system. Lucca et al. [4] focus on clustering incidents into
failure classes, in order to route the corresponding tickets to
those teams that possess the proper skills to resolve them. All
these techniques are orthogonal to our model, as they tackle
the ticket classification aspect of the management process.
However, we envision that future predictive analysis focused
on specific ticket classes would benefit from such approaches.

Incident tickets can either be human generated or thrown
by monitoring tools. While the first category always requires
corrective measures, the same is not always true for the
second one. In this context, Tang et al. [8] propose a tech-
nique to reduce the number of non-actionable tickets, while
preserving all automated tickets that require such measures.
Their evaluation shows an accuracy of correctly detecting non-
actionable items of up to 75%. We recognize the benefits of
using such a technique to eliminate non-actionable tickets for
future predictive models. Orthogonal approaches that detect
actionable patterns [9], [10] could be used in a complementary
fashion to produce even better results.

Finally, previous research has shown that faulty changes
can increase critical system and application outages. Kadar
et al. [11] focus on applying automatic methods to classify
change requests, such that one can have a better understanding
of past failure reasons for similar requests. Similarly, Santos
et al. [12] propose an interactive and dynamic method to
quickly identify root causes for failures due to change requests.
Motivated by the negative impact of such changes on the entire
system, the proposed techniques can be used together with
our predictive model to reduce the overall number of future
incidents.

Software Aging and Rejuvenation. Software aging [13]
refers to the progressive performance degradation or increased
occurence of failures of a software system. This is mainly
due to the exhaustion of operating system resources or error
accumulation. In recent years, a prevention technique called re-
juvenation, has been proposed in the software field. It involves
stopping the running software, cleaning its state and restarting
it. However, the question of when to apply such rejuvenation
or modernization techniques remains. Clearly, periodic actions
may not produce the best results since software and hardware
do not age at a constant rate. Grottke et al. [14] and Trivedi
et al. [15] propose time series and stochastic models, respec-
tively, to estimate trends and detect seasonal patterns for aging
software. They also show how, using seasonal variation, one
can predict future resource usages and trigger corresponding
rejuvenation measures. while we share the similar goal of
reducing server degradation, in contrast to [14], [15], our

improvement target is reduction of server incident tickets by
applying more complex improvement actions.

Predictive Maintenance. Oil, logistic or utility companies
base their businesses on physical assets. To ensure success,
they need to be able to maintain their systems in working
order, minimize outages, as well as reduce maintenance and
operational costs. Predictive maintenance is a crucial step
and focuses on analyzing data patterns for the underlying
infrastructure to offer insights and early warnings with respect
to emerging problems. In [16], the authors propose several
methods to assess the physical assets condition: (1) association
analysis between failures and configuration, model, age or
usage parameters; (2) lifetime analysis, that based on historical
data can project the failure probability in the future; (3)
risk estimation for networked infrastructure; (4) replacement
planning. Such analytics is useful for understanding server
behavior and we propose a technique that tackles both failure
associations and replacement strategies. Moreover, we envision
enriching our predictive approach in the future with time series
analysis, to model different levels of incidents (e.g., failures,
outages, performance degradation) based on historical data.
In this context, we could apply the method proposed by Liu
et al. [17], which learns temporal graph structures to detect
anomalies in oil-production monitoring systems.

III. METHODS

In this section we describe the problem setting and provide
a summary of two statistical learning methods we decided to
use and compare in the paper.

A. Problem Setting

Assume we are given a set of servers along with their
configuration information and their incident tickets collected
over a certain period of time from several service delivery
centers. We then define the notion of problematic server
as a function of ticket volumes and ticket severities. High
severity incident tickets indicate severe system failures thus
posing a high outage risk. Excessive numbers of low severity
incident tickets indicate high system administration workload
due to less critical system malfunctioning. Our goal is then to
automatically identify and rank the problematic servers based
on combined server configuration information and incident
ticket data. We achieve this by applying the statistical learning
methods described in the text below on the server data set.

Formally, let S denote the p-dimensional space of all
possible values for p considered server features. Each server
is then represented by a vector x ∈ S used as an input for
a predictive model M . Once trained on the available set of
servers, for each x, M associates a probability for it to be
a problematic server, i.e. M(x) ∈ [0, 1]. We can then use
M(x) to rank all servers and identify the problematic ones
(those with M(x) > 0.5). Moreover, we can also use the
predictive model to evaluate the impact of different server
modernization actions and to suggest the most effective ones.
Let a : S × Pa 7→ S denote an arbitrary parameterized
improvement action, a function which associates an input

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP 60

vector x of a server and an action parameter p ∈ Pa with
the vector of the modified server features x̃ = a(x, p), after
such an improvement action has been performed. This means
that x̃ represents x with its features adjusted according to
the action’s effect. We also consider combined actions. Let
(a1, Pa1

), . . . , (an, Pan
) be improvement action definitions.

The combined action (a∗1...n, P
∗
1...n) denotes the composite ac-

tion function a1◦. . .◦an. It is assumed that a1(a2(x, p2), p1) =
a2(a1(x, p1), p2) for any two actions. With a defined set
of improvement actions A = {(a1, Pa1), . . . , (an, Pan)}, a
chosen server x, and the predictive model M , we can simulate
how different actions with different parameters (or their com-
posites) change the probability of a server being problematic.
To achieve this, we calculate the prediction for the modified
server using M , i.e. p̃ = M(x̃), x̃ = a(x, pa). We can
measure the improvement of a parameterized action (a, pa)
by taking the difference between the prediction for the server
before (x) and after (x̃ = a(x, pa)) the modification , i.e.
I(a,pa) = M(x) −M(x̃). This enables us to choose actions
that yield high improvements.

B. Linear Logistic Regression

Let x ∈ Rp denote a real valued random input vector and
y denote a random output variable with joint input-output
distribution p(x; y). Assuming the existence of K classes and
multinomial distribution of the output y, logistic regression
uses linear functions in the input x to model the log-odds of
the posterior probabilities of the classes {P (y = k|x), k =
1, . . . ,K}. P (y = k|x) is the conditional probability of
a sample x to belong to class k. In order to ensure that
the posterior probabilities of the K classes sum to 1, the
model is specified with K − 1 log-odds (also termed logit
transformations):

log
P (y = 1|x)
P (y = K|x)

= β10 + βT
1 x

log
P (y = 2|x)
P (y = K|x)

= β20 + βT
2 x

...

log
P (y = K − 1|x)
P (y = K|x)

= β(K−1)0 + βT
K−1x.

The posterior probabilities derived from these equations are
given by:

P (y = k|x) =
exp(βk0 + βT

k x)

1 +
K−1∑
i=1

exp(βi0 + βT
i x)

, k ≤ K − 1

P (y = K|x) =
1

1 +
K−1∑
i=1

exp(βi0 + βT
i x)

.

For a given training data set D = {(x1, y1), . . . , (xN , yN)}
the logistic regression model is usually estimated by a maxi-
mum likelihood approach.

In this paper we are interested in the binary classification
scenario (K = 2) with y ∈ {0, 1}. Then the solution of:

Optimization Problem 1: Over parameters β and λ, maxi-
mize:∑

(xi,yi)∈D

{yiβTxi − log(1 + exp(βTxi)))}+ λJ(β).

is a maximum a posteriori of the logistic regression model for
binary classification with parameters β and regularizer J(β)
controlled by the regularization parameter λ. In practice, only
a finite sample of the data is available. The regularizer is then
used to counter overfitting and thus improve the generalization
performance of the fitted model on unseen data ([18], [19]). In
our work we apply ridge logistic regression and lasso logistic
regression that use the square of the L2-norm of the model
parameters β denoted by ‖β‖2 and the L1-norm of the model
parameters β denoted by |β| as regularizer functions J(β),
respectively.

Linear classification models such as linear logistic regres-
sion are very well studied and frequently applied because
they provide interpretable classification rules. Their main
disadvantage is that they fail to capture complex dependencies
which appear in the data from many real-world applications.
Therefore we also used the random forest model, a non-linear
statistical learning method described below.

C. Random Forest

Random forest models [20] are ensembles of classification
or regression trees. While trees are very attractive and widely
used nonlinear models due to their interpretability, they exhibit
high variance. The random forest model reduces the variance
by averaging a collection of decorrelated trees which provides
a performance comparable to support vector machines (SVMs)
and boosting methods. Usually, B trees are fitted using CART
(Classification and Regression Trees) [19]; each tree on one
of B bootstrap samples drawn from the training data. The
trees are fully grown by considering only a fixed-size, random
subset of all features when choosing the best split variable for
their terminal nodes. They are left unpruned. The prediction
for a new sample is computed as a majority vote or as
an average of the predictions of all trees in the collection
for classification and regression, respectively. A summary of
the procedure for training random forest models is given in
Algorithm 1.

An error estimate based on out-of-bag (OOB) samples is
computed during the fitting procedure of a random forest
model: the random forest prediction for each training sample
is computed by averaging the trees induced on bootstrap
samples which did not contain the considered sample. The
OOB error estimate is comparable to the one obtained by a
time-consuming cross-validation and can be used for model
selection. The OOB samples are also used to produce a
variable-importance measure that quantifies the prediction
ability of each feature. It is computed as the decrease in model
accuracy on the OOB samples of each tree when the values
of the feature of interest are permuted, averaged over all trees.
When using non-linear models variable-importance measures
are very valuable since they provide model interpretability. We

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP 61

TABLE I: List of server configuration predictors used in the classification models.

Predictor Description

Purpose Grouping of the server purpose in five classes: App, Dev, Net, Infr, Sto

Server Family Manufacturer and machine architecture (e.g. IBM p series, HP ProLiant, etc.)

Age Elapsed time since server release in years

Virtualization level Number of logical servers on the same physical server

OS Family Type of OS (e.g. IBM AIX, Windows)

OS currency
Equidistant mapping of the versions for each OS type (excluding patch levels) to numbers

in the interval [0, 1], where 0 indicates no information available and 1 indicates the most recent version

CPU busy Mean CPU utilization over monthly periods averaged over 12 months

CPU max Peak CPU utilization over monthly periods averaged over 12 months

Memory busy Mean memory utilization over monthly periods averaged over 12 months

Disk busy Mean disk space utilization over monthly periods averaged over 12 months

Algorithm 1 Train Random Forest Model for Classification
or Regression
Input: Training data set D = {(x1, y1), . . . , (xN , yN)},
number of trees B, size of subset of predictors m used for
growing the trees.
For b = 1 to B:

1) Generate a bootstrap data set of size N by drawing
samples randomly with replacement from the training
data D.

2) Grow a full-size tree Tb using the bootstrapped data set
by recursively repeating the two steps below for each
terminal node of Tb:
• Randomly select a subset of m predictors (m ≤ p).
• Choose the best predictor and split point among

them and split the node into two child nodes.
Output: Ensemble of trees T1, . . . , TB .

should also pint out that in the classification scenario the OOB
votes from the trees are used to compute class probabilities for
the samples.

IV. EXPERIMENTS AND DISCUSSION

A. Data

The data set used in our work is gathered from several
accounts of a large IT service provider over a period of one
year. It contains 10101 servers and 118121 incident tickets. As
depicted in Figure 1 the different accounts are not represented
with an equal number of training samples, i.e. number of
logical servers. We extracted the following information for
each logical server: account ID, server-hardware information,
OS information, server purpose, and utilization information.
A detailed list of the extracted predictors is given in Table I.

We assign labels to the servers according to the following
definition. A server is problematic if it generates at least two
tickets with high severity or at least twelve tickets with low
severity within a year. Otherwise the server is unproblematic.

 0

 500

 1000

 1500

 2000

 2500

 3000

A1 A2 A3 A4 A5 A6 A7 A8 A9 A1
0

A1
1

A1
2

A1
3

A1
4

A1
5

A1
6

A1
7

A1
8

A1
9

A2
0

A2
1

A2
2

A2
3

Sa
m

pl
es

 p
er

 a
cc

ou
nt

Something

Fig. 1: Number of samples per account in the available data
set.

B. Performance Measures

To evaluate the performance of the considered models
we use two measures, namely classification accuracy and
area under the receiver operating characteristic (ROC) curve
(AUC). A ROC curve is a plot of the false positive rate (the
fraction of false positives out of all negatives) against the true
positive rate (the fraction of true positives out of all positives)
for all possible decision thresholds. In this way it illustrates
the ranking ability of a binary classification method. The area
under this curve has values in [0, 1], where 1 corresponds to
perfect predictions and 0.5 to random guessing.

It is important to note that in the case of large class
imbalance in the training data, the accuracy is not a proper
performance measure, as the simple method that just assigns
the majority class to every sample will achieve very high
accuracy. Thus, when we quantify the performance of methods
on class-imbalanced training data instead of accuracy and
AUC, we report balanced accuracy, G-mean and F -score
defined as:

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP 62

Acc− =
True Negatives

True Negatives + False Positives

Acc+ =
True Positives

True Positives + False Negatives

Balanced Accuracy =
Acc− +Acc+

2

G-mean =
√
Acc− ·Acc+

Precision =
True Positives

True Positives + False Positives

Recall = Acc+

F-measure =
2 · Precision · Recall
Precision + Recall

C. Results

This section describes the evaluation setting and presents
the results of the computational experiments. We use a 10-
fold cross validation procedure to select the regularization
parameter λ in the two logistic regression models. The two
model parameters of the random forest, i.e. the number of
trees B and the number of variables considered at each split
m are selected based on the OOB error. We report average
accuracy and average AUC obtained from 100 runs, where in
each run we randomly select 70% of all available data for
training, fit the model of interest on them and compute the
performance measure on the remaining (unseen) 30% of the
data. The results for the three considered models, the ridge
logistic regression, the lasso logistic regression and the random
forest classifier are summarized in Figure 2.

Compared to the linear logistic regression models, the
random forest model achieves both better accuracy and AUC
performance. The improvement is 11% and 9.4% over ridge
regression and lasso regression, respectively. According to
Wilcoxon rank sum test the two improvements are significant
with p-value < 2.2e− 16. This demonstrates that a non-linear
approach such as the random forest is better suited for tackling
the server classification problem. Therefore, in the remainder
of the paper we focus on the random forest method.

Similar to many other classifiers, the prediction performance
of the random forest model is hampered by the problem of
imbalanced data where at least one class is represented by a
very small portion of the available samples. Since the random
forest aims to minimize the overall error rate, it will achieve
good prediction accuracy on the majority and poor accuracy
on the minority class.

For the server classification problem it is important that we
handle user-specified definitions for determining problematic
servers. Therefore, it is often the case that in practice we
need to deal with class-imbalanced data sets. To do this
we adopt two approaches, namely, balanced random forests

and account-specific balanced random forests. The balanced
random forest algorithm [21] modifies step 1 of the original
training procedure in Algorithm 1, such that first a bootstrap
sample is drawn from the minority class and then a bootstrap
sample with the same size is drawn from the majority class.
In this way, on the one hand, each tree is trained on a class-
balanced bootstrap sample, and on the other hand, since the
majority class is resampled many times all available informa-
tion is used by the model. Motivated by the fact that we have
uneven sample representation for the different accounts, we
devised the account-specific balanced random forest approach
as follows. It creates balanced bootstrap training sets in
Algorithm 1 by reducing the number of majority-class samples
drawn from the over-represented accounts. The size of the
reduction is proportional to the account size, i.e. the larger
the account the smaller number of majority class samples are
drawn from it. In this way we make sure that all available
information from the accounts with fewer samples in the
training set, is used.

In order to evaluate the performance of the two approaches
described above, we modify the definition of problematic
servers given in the Problem Setting section. In the new
context, a server that generated more than 14 incident tickets
across all severities in a year is a problematic server. This
definition yields a class-imbalanced training set comprising
20% problematic and 80% unproblematic servers. In order
to evaluate the performance of the two approaches that deal
with imbalanced data sets (the balanced random forest and
the account-specific balanced random forest), we use the same
evaluation setting as the one described in the beginning of this
section. The only difference is that we evaluate the models
by using the performance measures for imbalanced data sets
instead of using accuracy and AUC. Note that the held-out test
sets in the evaluation setting are randomly sampled from the
imbalanced training data set. The results of the computational
experiments are shown in Table II.

When the training data are imbalanced, both the balanced
random forest and the account-specific balanced random for-
est approaches significantly outperform the classical random
forest method by 9 − 39% for all considered performance
measures with p-values< 2.2e − 16 according to Wilcoxon
rank sum test. Considering the performance of the two meth-
ods used for dealing with the class-imbalance problem, the
balanced random forest achieves slightly better (around 2%)
balanced accuracy and G-mean performance, and the account-
specific balanced random forest approach yields 6% better F -
score performance. According to Wilcoxon rank sum test all
these differences are significant at the 0.001 level. In other
words, while the balanced random forest approach achieves
similar accuracy performance for both the majority and minor-
ity class, the account-specific balanced random forest approach
provides better accuracy for the minority class by sacrificing
little of the accuracy for the majority class.

To sum up, the two approaches we use in the case of im-
balanced training sets achieve comparable balanced accuracy
performance to the accuracy obtained for a balanced set.

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP 63

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ridge LR Lasso LR Random Forest

Ac
cu

ra
cy

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ridge LR Lasso LR Random Forest

AC
C

(b)

Fig. 2: Accuracies (a) and AUCs (b) with their corresponding confidence intervals for ridge logistic regression, lasso logistic
regression and random forest. The depicted values are computed by averaging the accuracy and AUC obtained on a held-out
data set over 100 runs.

TABLE II: Balanced Accuracy, G-mean and F -score with their corresponding standard errors (SE) for the classical random
forest, the balanced random forest (BRF) and the account-specific balanced random forest approach.

Method Balanced Acc (SE) G-mean (SE) F -score (SE)

Random Forest 0.651(0.001) 0.578(0.002) 0.498(0.003)

Balanced RF (BRF) 0.759(0.001) 0.758(0.001) 0.806(0.001)

Account-specific BRF 0.740(0.001) 0.737(0.001) 0.867(0.001)

TABLE III: Summary of considered modernization actions.

Action Description Server Features Update

OS refresh Upgrade the OS to the latest version in its family OS currency = 1

HW refresh Change the underlying server hardware Age = 0

Disk capacity increase Increase the available disk space x times Disk busy = Disk busy/x

Virtualization reduction

Reduce the number of Virtualization level = Virtualization level/p

concurrently running virtual machines CPU busy (max) = CPU busy (max) /p

on one physical machine by p% Memory busy = Memory busy /p

0% 10% 20% 30% 40% 50%

All

OS refresh + VM reduction (75%) + Server HW refresh

VM reduction (75%) + Server HW refresh

OS refresh + Server HW refresh

OS refresh + VM reduction (75%)

Server HW refresh

VM reduction (75%)

VM reduction (50%)

OS refresh

Disk capacity increase (100%)

Fig. 3: Forecasted improvements after action implementation for a group of 7-year old OS Family 1 servers running on Server
Family 1 architecture.

D. Use case: Impact of Server Modernization Actions

Server modernization leads to improved server behavior,
such that the number and possibly even the severity of reported

incidents is reduced. Applying such actions has been widely
recognized as an important step in services management
and predictive maintenance. To meet this end, we apply our

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP 64

0% 10% 20% 30% 40% 50%

OS refresh + Disk capacity increase (200%)

Disk capacity increase (200%)

Disk capacity increase (100%)

OS refresh + Server HW refresh

OS refresh

Server HW refresh

Fig. 4: Forecasted improvements after action implementation for a group of 7-year old OS Family 2 servers running on Server
Family 2 architecture.

predictive model to evaluate the impact of single or combined
modernization actions performed on servers or groups of
servers as described in the Problem Setting.

As discussed in [22], several strategies can be applied
in practice: (1) centralization – servers are consolidated in
fewer sites, thus increasing availability and improving recovery
capabilities; (2) physical consolidation – older servers are
replaced with newer, more powerful or clustered systems; (3)
workload/application integration – multiple applications are
co-located onto fewer servers and OS instances; (4) virtu-
alization, thus reducing physical complexity and increasing
flexibility in resource allocation.

In our scenarios, we apply modernization actions at the
level of small groups of servers, therefore centralization as
a strategy cannot be applied. Similarly, since our data does
not include information about the running workloads and
their communication patterns, we exclude the third strategy
as well. The improvement actions along with their description
and translation in terms of server feature modifications are
summarized in Table III.

We have chosen two groups of highly problematic servers
(i.e. with the associated probability above 90%) with different
sets of features in order to show how our approach can
be applied in practice. The two groups are summarized in
Table IV. The first group is used for application purposes and
is therefore highly virtualized. On the other hand, the servers
in the second group are dedicated storage machines and have
high disk and memory utilization. In what follows we apply the
model on a set of single and composed improvement actions,
as defined above, and show which modernization strategies are
most suitable for each of the chosen server groups. The results
are summarized in Figures 3 and 4.

As observed in Figure 3 the servers in the first group
would benefit most from single actions that either reduce the
number of virtual machines or refresh the HW stack. This
can be expected as the servers are 7 years old and highly
virtualized. However, the highest improvement is achieved
when considering both actions together combined with an OS
refresh which is usually done when refreshing the hardware.

Considering that the second group consists of dedicated
storage machines, the action with the highest impact increases
the disk capacity as one would expect. These servers have

TABLE IV: Summary of the two server groups considered for
modernization actions.

Property Group 1 Group 2

Purpose Application Storage

Server Family Server Family 1 Server Family 2

Age 7 7

OS Family OS Family 1 OS Family 2

CPU busy 5.5 11.9

CPU max 61.5 98.4

Memory busy 43.3 90.7

Disk busy 45.1 75.6

Virtualization level 14.5 1

no virtualization consequently reducing the virtualization level
cannot be applied in this scenario.

The results obtained from applying our predictive model on
server groups with different properties lead to two important
conclusions. First, there is no universal modernization strategy
that provides the highest improvements in all cases. In fact, our
evaluation shows that several factors, such as the server pur-
pose, age or OS version, greatly influence the best suggested
action. Second, contrary to the general belief that the most
complex action (i.e. consisting of all single actions) should
always be the best choice, in practice this is not necessarily
the case. For instance, combining OS refresh and disk capacity
increase actions for the second group of servers will provide
minimal gains, but higher costs, when compared to applying
only a disk increase strategy.

V. CONCLUSION

In this paper, we have introduced a novel, automated ap-
proach to selecting appropriate server modernization action
based on actual server behavior. The core of the approach is
a Random Forest model that predicts from the server HW,
OS, and utilization properties whether the number of incident
tickets for this server exceeds a pre-defined threshold, thus
classifying the server as problematic. We have shown that
the Random Forest model achieves an accuracy of 76% for
balanced classes and outperforms the linear logistic regression

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP 65

models on average by 10%. We further demonstrated the
usage of the model to the evaluation of different server
modernization actions for two groups of problematic servers.
The highest-impact actions are a reduction of the number
of virtual machines or refresh of the HW stack and a disk
capacity increase for the first and the second server group,
respectively. The results of the impact evaluation illustrate
that no action is suited for all problematic servers and that
more complex actions do not necessarily yield significantly
higher gain. Including our predictive model in the server
modernization decision process thus helps to identify the
optimal modernization action.

ACKNOWLEDGMENT

The authors would like to express their gratitude to Nadeem
Malik, Jorge Cordero, E.E. Jan, Yixin Diao, and Doug Dyke-
man, all employed by IBM, for helpful and constructive
discussions that helped us improve the quality of the model.

REFERENCES

[1] http://www.itil officialsite.com/Publications/Core.aspx, “ITIL Service
Operation.”

[2] Y. Diao, H. Jamjoom, and D. Loewenstern, “Rule-based problem classi-
fication in it service management,” Proc. of IEEE CLOUD, pp. 221–228,
2009.

[3] R. Gupta, H. Prasad, L. Luan, D. Rosu, and C. Ward, “Multi-dimensional
knowledge integration for efficient incident management in a services
cloud,” Proc. of IEEE SCC, pp. 57–64, 2009.

[4] G. A. D. Lucca, M. D. Penta, and S. Gradara, “An approach to classify
software maintenance requests,” Proc. of IEEE ICSM, 2002.

[5] Y. Diao, A. Heching, D. Northcutt, and G. Stark, “Modeling a com-
plex global service delivery system,” Proceedings of the 2011 Winter
Simulation Conference, pp. 690–702, 2011.

[6] J. S. Bozman and K. Broderick, “Server refresh: Meeting the chang-
ing needs of enterprise it with hardware/software optimization,” IDC
Whitepaper, 2010.

[7] http://www.ibm.com/software/tivoli/products/monitor/, “IBM Tivoli
Monitoring.”

[8] L. Tang, T. Li, F. Pinel, L. Shwartz, and G. Grabarnik, “Optimizing
system monitoring configurations for non-actionable alerts,” Proc. of
IFIP NOMS, pp. 34–42, 2012.

[9] J. L. Hellerstein, S. Ma, and C.-S. Perng, “Discovering actionable
patterns in event data,” IBM Systems Journal, vol. 43(3), pp. 475–493,
2002.

[10] W. Peng, C. Perng, and H. Wang, “Event summarization for system
management,” Proc. of ACM KDD, vol. 43(3), pp. 1028–1032, 2007.

[11] C. Kadar, D. Wiesmann, J. Iria, D. Husemann, and M. Lucic, “Automatic
classification of change requests for improved it service quality,” Proc.
of SRII Global Conference, pp. 430–439, 2011.

[12] R. L. dos Santos, J. A. Wickboldt, R. C. Lunardi, B. L. Dalamzo, L. Z.
Granville, L. P. Gaspary, C. Bartolini, and M. Hickey, “A solution for
identifying the root cause of problems in it change management,” Proc.
of IEEE/IFIP IM, 2011.

[13] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuve-
nation: analysis, module and applications,” Proc. of 25th Symposium on
Fault Tolerant Computer Systems, pp. 381–390, 1995.

[14] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi, “Analysis of
software aging in a web server,” IEEE Transactions on Reliability, 2006.

[15] K. S. Trivedi, K. Vaidyanathan, and K. Goseva-Popstojanova, “Modeling
and analysis of software aging and rejuvenation,” Proc. of IEEE SS,
2000.

[16] A. H. et al., “Analytics-driven asset management,” IBM Journal of
Research and Development, vol. 55(1-2), pp. 138–156, 2011.

[17] Y. Lui, J. Kalagnanam, and O. Johnsen, “Learning dynamic temporal
graphs for oil-production equipment monitoring system,” Proc. of ACM
KDD, pp. 1225–1234, 2009.

[18] B. Schölkopf and A. Smola, Learning with kernels. MIT Press, 2002.

[19] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. Springer, 2009.

[20] L. Breiman, “Random forests,” Machine Learning, 2001.
[21] C. Chen, A. Liaw, and L. Breiman, “Using random forest to learn

imbalanced data,” Statistics Technical Reports, University of California
Berkeley, 2004.

[22] M. Badaloo, “An examination of server consolidation: trends that can
drive efficiences and help businesses gain a competitive edge,” IBM
Global Services, 2008.

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP 66

