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Abstract—Network search makes operational data
available in real-time to management applications. In con-
trast to traditional monitoring, neither the data location
nor the data format needs to be known to the invoking
process, which simplifies application development, but
requires an efficient search plane inside the managed
system. The search plane is realized as a network of
search nodes that process search queries in a distributed
fashion. This paper introduces matching and ranking for
network search queries. We are proposing a semantic for
matching and ranking, which is configurable to support
different types of management applications—from exact
matching for database-style queries to loose, approximate
matching, which is appropriate for exploratory purposes.
We describe an echo protocol for efficient distributed
query processing that supports matching and ranking.
Further, we present the design of a search node, which
maintains a real-time database of operational information
and allows for parallel processing of search queries. A
prototype implementation on a cloud testbed shows that
the network search system, on a 9-node cluster with
24 core servers, executes 200 global search queries/sec
with the 75th percetile latency below 100 milliseconds
and with a CPU utilization below 5%. The performance
measurements, together with our design, suggest that a
system of 100,000 servers processing the same load would
exhibit the same overhead per server and a query latency
of below 1 sec.

Keywords—Network search, matching and ranking, dis-
tributed query processing, distributed management, in-
network management.

I. INTRODUCTION

Network search is a paradigm that stresses an
information-centric view of network management [1],
[2]. Its main elements are real-time access to operational
and configuration data, a weakly structured data model,
and a scalable search function that executes inside the
managed system. Network search is specially suited for
large-scale dynamic networks and networked systems,
and it enables novel management functionality, such as
“network googling” for root cause analysis of faults,
dynamic asset tracking, and real-time network analytics.

The key difference between network search and
traditional web search is that the former relates to search
for real-time information inside a networked system,
while the latter centers around search for non real-
time data in an offline index database. While many

concepts of web search are applicable to network search,
the challenge is to realize them under the stringent
requirements of network search.

In earlier work, we proposed a design of a network
search system, including a protocol for scalable query
processing. In this paper, we investigate the semantics of
network search queries with respect to query matching
and result ranking. Elements of our proposed solution
are based on results from information retrieval and web
search; they make use of the extended boolean retrieval
model [3], as well as connectivity metrics and attribute
frequency of information objects.

We believe that a network search system should
offer, for the same query language, a range of matching
and ranking semantics, in order to support different
types of management applications. For some appli-
cations, database-style exact matching is appropriate,
where each data item either fully matches a query or
does not match at all; for others, loose, approximate
matching is more suitable, where data items match a
query to different degrees. The same applies to ranking:
for some applications, objects with more attributes of a
given type are more relevant—and thus ranked higher—
than objects with fewer such attributes; for other ap-
plications, objects with recently updated attributes are
more relevant than those with more stale information,
etc.

Consider a search query that includes a sequence
of IP addresses. For an asset tracking application, for
instance, matching is best performed in such a way that
exactly the objects with those IP addresses are retrieved,
and their ranking order is irrelevant to the application.
In contrast, consider a network-security administrator
who receives a set of IP addresses from an intrusion
detection system and runs a network search query
with these addresses. In this case, the query semantics
is such that it matches objects representing devices,
flows, applications, etc., that are associated with these
addresses. In the query result, highly connected devices
rank high, as well as current flows.

With this paper, we make the following contribu-
tions. We introduce a semantic for matching and ranking
that is tailored to network search. We show how the
semantic can be realized in a distributed query process-
ing protocol, which has sound scaling properties. Both
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the matching and ranking functions are configurable.
The possible configurations range from supporting ex-
act matching, which allows database-style retrieval, to
loose, approximate matching, which is similar to the
matching semantics of the vector space model in in-
formation retrieval [4], and which supports exploration
of the information space. Configuration parameters can
be given at query invocation time, and our design
allows a network search system to concurrently process
queries with different matching and ranking semantics.
The paper further presents the design of a search node
supporting multicore hardware. Lastly, we report per-
formance figures from a prototype implementation on
a cloud testbed, which demonstrates the feasibility of
engineering a high performance network search system.

II. RELATED WORK

Most of the research in matching and ranking has
been performed in the context of web search or search
related to extensions of traditional web technologies.
Many concepts that have been applied in web search
and possibly refined later are based on earlier work
in information retrieval (IR). IR does not generally
distinguish between matching and ranking. Given a
search term, an IR system produces a set of objects,
each associated with a matching score. This score is
often based on two metrics: the term frequency tf and
the inverse document frequency idf [5]. Two examples
of IR models that are relevant to this paper are the vector
space model and the extended boolean retrieval model
[3]. A brief discussion of IR concepts with respect to
network search can be found in [1].

Traditional web search is performed on static web
content and uses primarily link analysis for ranking,
for example, PageRank [6] and HITS [7]. Current web
search engines, which search static as well as dynamic
content, use hundreds of metrics to compute ranking
scores; in addition to page ranks, these metrics include
a range of page usage statistics, matching scores from
different IR models, freshness of data, etc. [8]. The
weights of these metrics are generally determined using
machine learning techniques applied to query logs [9],
[10]. A widely used matching scheme in web search
is BM25F, which is an extension of the popular IR
model Okapi BM25 [11]. It is based on partitioning
information on a web page into different fields, which
are matched according to their importance.

With the evolution of Web 2.0, new functionality
has been introduced, which gives rise to new metrics
for ranking. For instance, in social tagging systems,
metrics based on tags for pages and links influence the
ranking score [12]; in live search systems, the freshness
of the data influences the score [13]. Recently, web-
based frameworks have been developed that provide
access to specific types of information. For instance, the
Web-of-Things framework, which supports Internet-of-
Things technology, includes search functions that match
against numerical values [14]. Second, the Web-of-Data
framework makes available massive datasets in form of
graphs. Term matching is performed against attributes
associated with graph nodes [15], [16].

Fig. 1. An architecture for a network search system [1]

III. A DISTRIBUTED ARCHITECTURE FOR
NETWORK SEARCH

Figure 1 shows an architecture for a network search
system, which we introduced in [1]. Its key element
is the search plane, which conceptualizes the network
search functionality. This plane contains a network
of search nodes, which have processing and storage
capacities. A search node can communicate with a set
of neighbors, which are identified through links of the
network graph. The design of this plane supports search-
ing in a distributed and parallel fashion. A search node
can be realized in various ways: it can be part of the
management infrastructure outside the managed system,
it can be run as a standalone network appliance, or it
can be integrated into a network element using a variety
of technologies. Our current prototype implements the
third option.

The bottom plane in Figure 1 represents the physical
network that is subject to search. Each network element
is associated with a search node, which maintains (or
has access to) configuration and operational data from
that network element. This data is modeled as a set of
objects, whose structure is described in Section IV-A.
Note that the figure shows the simplest form of associa-
tion between a network element and a search node; it is
possible that a search node maintains data from several
physical devices, or, alternatively, a device updates data
on several search nodes. The top of Figure 1 shows
the management plane, which includes the systems and
servers running processes for network supervision and
management.

There are three important interfaces in this architec-
ture. The first is the search interface, which supports the
query language discussed in Section IV-B. We envision
that every search node is an access point for search
queries. The second interface defines the interaction
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between a search node and a network element, which
can be realized through polling or can be push based.
This interface is technology-dependent and possibly
proprietary. The third interface is the peer interface
between the neighboring search nodes. It enables node
to interact for distributed processing of search queries.

Each search node runs a process that communicates
with the associated network element(s) from which it
retrieves network data. A database function dynamically
maps that data into the information model for network
search and updates the local search database.

Search functions, invoked from the management
plane through query invocation, are executed as dis-
tributed algorithms on the graph of search nodes. During
the execution of a query on a search node, the local
search database is accessed, the matching of the local
query against stored indices is performed, and the local
search result is possibly aggregated with results from
other nodes.

IV. A SEMANTIC FOR MATCHING AND RANKING OF
NETWORK SEARCH QUERIES

Following [17], our model for network search in-
cludes a four-tuple 〈O,Q,M,R〉. Here, O is the set
of objects that represents the object space; Q is the
set of syntactically correct queries on this space; M is
the matching function, which determines, for a query,
the set of objects in the query result; R is a ranking
function, which orders the objects in the query result.
In the following, we review the object model and the
query language. Then, we introduce the matching and
ranking functions for network search.

A. The object model

In [2], we presented an object model for network
search. Objects in this model can represent physical
and logical entities in a networked system, such as
routers, servers, IP flows, virtual machines, etc. An
object is modeled as a bag of attribute-value pairs—
for short, attributes—whereby an attribute can contain
configuration or operational information. An object has
a unique name and a type, both of which are modeled
as attributes. Figure 2 shows three sample objects. We
say two objects are linked if they share an attribute.

B. The query language

In [2], we presented a query language for nework
search, the core of which is given in BNF notation:

q → t | q ∧ q | q ∨ q (1)
t→ a | v | a op v (2)

op→ = | < | · · · (3)
Rule (2) states that a token in this language is either
an attribute name a, a value v, or an attribute-value
pair a OP v. According to rule (1), a query can be a
single token, or it can be constructed using tokens and
boolean operators. We leave out here the discussion
of the projection, aggregation and link operators of
the language, because they are not essential to the
discussion in this paper.

C. A semantic for matching search queries

In the simplest case, a matching function M maps
a query and an object onto a boolean value, i.e.,
M : Q x O → {0, 1}. An object either matches a
given query, in which case it is included in the result
set of the query, or it does not match, in which case
it is not part of the query result. We say that M is
an exact matching function, if it maps to a boolean
value. Such matching functions are generally used in
databases. Also, the semantics of the query language
we introduced in [2] is based on exact matching.

Web search does not use exact matching but approx-
imate matching. In this case, the matching function M
maps a query and an object onto a matching score in
the interval 0–1, i.e., M : Q x O → [0, 1]. If M returns
0, the object is not included in the result set of the
query; otherwise, it is included, and the value indicates
the relevance of the object for the query: the higher the
value the better the match.

Network search is similar to web search in the sense
that search is often used to explore an information space,
and the simple syntax of the query language does not
always allow to express the intention of the invoker.
Therefore, approximate matching should be supported
in network search. Note also that exact matching is a
special case of approximate matching.

In order to define the matching function M for
approximate matching, we apply the extended boolean
retrieval model, a popular IR model which was proposed
by Gerard Salton et al. in 1983 [3]. The query language
of this model is close to the one we are using for
network search. An important part of the model is
a similarity function, which measures the similarity
between a query and an object, and which is analogous
to the matching function M in the network search
model.

Our function M uses two basic metrics from infor-
mation retrieval, the term frequency tf and the inverse
document frequency idf . In the network search model,
these metrics relate to tokens of the query language.
This means that the term frequency expresses the fre-
quency of occurences of an attribute name, an attribute
value and an attribute in an object, and the inverse
document frequency indicates the inverse of the number
of occurences of attribute names, attribute values and
attributes in the object space. To give a specific example,
consider the query with the token IP-address. The
term frequency for this token and object (a) in Figure 2
is the number of occurences of this attribute normalized
by the total number of attributes of the object, i.e.,
tf = 0.333. The inverse document frequency for this
token relates to the probability that an object has the
attribute IP-address. (We give here simplified version
of the formulas for tf and idf in order to stress the
basic ideas.)

For a specific object o, we compute M for a token
t as M(t) = tft · idft. Following [3], we define the
function M for queries that are constructed out of n
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object-name : urn:ns:cloud-08
object-type : server
cpu-core : 12
memory : 32 GB
IP-address : 172.13.1.31
IP-address : 172.13.1.32
IP-address : 172.13.1.33
load : 0.85
uptime : 11350735.47
OS : Ubuntu-3.04

(a)

object-name : urn:ns:instance-07
object-type : VM
cpu-core : 2
memory : 4 GB
IP-address : 192.168.1.5
server : urn:ns:cloud-08
load : 0.5
customer : urn:ns:john:watson
uptime : 350735.47

(b)

object-name : urn:ns:instance-18
object-type : VM
cpu-core : 1
memory : 2 GB
IP-address : 192.168.1.19
server : urn:ns:cloud-07
load : 0.4
customer : urn:ns:john:watson
uptime : 650735.47
hypervisor : kvm

(c)
Fig. 2. Sample objects in a search space. (a) an object that represents a server in a cluster, (b)–(c): two objects that represent virtual machines
in servers.

tokens and boolean operators as follows:
M(q1 ∨ · · · ∨ qn) =

||(M(q1),··· ,M(qn))||p√
n

(4)

M(q1 ∧ · · · ∧ qn) = 1− ||(1−M(q1),··· ,1−M(qn))||p√
n

(5)

Equations 4 and 5 use the Lp vector norm, also
known as P-norm. Choosing p =∞ results in M being
the matching function of the (conventional) boolean
model in IR, i.e., M performs exact matching [18];
choosing p in the interval [1,∞) results in an ap-
proximate matching function. Changing p to a smaller
number increases the number of matched objects for
a given query. For p = 1, M becomes the matching
function of the vector space model in IR and performs
loose approximate matching [4]. With equations 4 and
5, the matching function on any boolean expression is
well-defined.

In our matching model, all tokens have the same
weight. The framework in [3] upon which we base
our matching function allows us to include weights for
tokens in a straightforward way. We plan to study such
an extension as part of our future work. (Models for
term weights are important for web search systems.)

D. A ranking function

A ranking function R maps the result set of a query
q onto an ordered list. The result set Oq of query q
includes those objects in the object space whose match-
ing score is positive, i.e., Qq = {o ∈ O|M(q, o) > 0}.
The first element of the list is the object that is most
relevant to the query, and the relevance decreases with
each subsequent list element. In search systems, this list
is often truncated after k elements in order to limit the
size of the result set. Note that the matching function
M introduced in the above Section IV-C is a ranking
function. In the following, we will extend M to include
heuristics that are relevant to network search, and we
will express the relevance of an object to a query in
form of a ranking score.

The first metric we are considering measures the
similarity between an object and the query, the second
relates to the connectivity of an object within the graph
of all objects, whereby links between objects express

relationships through joint attributes (see Section IV-A),
and the third relies on information freshness. In the
search literature, such metrics are also called weights
or signals.

First, our similarity metric uses the matching func-
tion M discussed above, extended to accomodate our
object model. The matching rule for an object name
is extended, so that a token matches a substring in a
name, e.g., ‘john’ matches ‘urn:ns:john:watson’. Also,
the contribution to the matching score is higher for the
name and the type attributes than for other attributes in
an object, since we consider objects matching a query
via name or type more relevant to the query than objects
matching the query via other attributes. Second, the
ranking score considers the connectivity of an object
within the graph of all objects. The intuition behind this
metric is that a high connectivity of an object signifies
a high importance of this object. In web search, the
same idea of measuring connectivity is behind the page
rank or hub score metrics [19]. Third, the ranking score
considers the freshness of the information contained in
an object: the more recent the information, the higher
the score, which means that fresh information is more
relevant to a query. Finally, note that other metrics can
be considered when computing the ranking score, for
instance, metrics relating to location or search history
of a query invoker. Such metrics have proven useful in
other search systems, and we plan to study them for
possible inclusion in our network search system. We
compute the ranking function R as a weighted sum of
the above metrics.

The matching and ranking functions discussed in
this paper compute, for a given query q and object
space O, the result set and an ordering of objects within
the set. The position of an object within this ordering
expresses its relevance with respect to the query. It
is important to recognize that this relevance is highly
dependent upon the management task that uses network
search to obtain information from the network. For
instance, consider three different management tasks: a
human operator who “googles the network” to identify
the root cause of a fault, a cloud management applica-
tion that performs virtual asset tracking, and an anomaly
detection application that searches for abnormal patterns

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP 254



in network state information. For the same or similar
queries, all these applications may consider different
result sets as appropriate and different ordering policies
to reflect their respective relevance. For this reason,
matching and ranking modules in a network search
system must be generic, so that they can be instantiated
for specific application purposes. In our current design
and system implementation, the matching function can
be initialized with different term weights and different
values for the p vector norm (p =∞ for exact matching,
p < ∞ for approximate matching, and the default is
p = 2). The ranking function can be initialized with
different weights for the metrics discussed above. A
weight can be set to 0 to ignore a specific metric.

V. DISTRIBUTED PROCESSING OF SEARCH QUERIES

Our approach to process network search queries
makes use of the echo protocol, a tree-based protocol
suitable for distributed polling [20] [21]. It is based on
an algorithm first described by Segall [22]. The echo
protocol executes on the network graph of the search
plane (Figure 1). It can be started on any search node
once a query q has been received. First, the query is
disseminated to every node and executed against the
local database D. The results of all local operations
are sent along a spanning tree, where the partial results
are aggregated. The definition of the local operation,
the aggregation operation of the query result, and the
current local state of the query collection, are modeled
in an object, called the aggregator object of the echo
protocol.

Figure 3 shows the aggregator object for distributed
processing of queries expressed in the language given
in Section IV-B. The object contains the functionality
for local data retrieval, matching and ranking, as well
as for incremental aggregation of the partial results
along a spanning tree. The state of the aggregator object
is captured in the variable qr, which stores the local
search result of query q, potentially also an aggregated
search result. qr is of type dictionary, which contains
3-tuples of the structure (object name, object, ranking
score). Each tuple contains an object retrieved from the
local database, together with its ranking score relative
to query q. The dictionary function insert() inserts a
tuple into a dictionary, the function merge() combines
two dictionary into a single one, and the function top-
k() creates a dictionary with the top k tuples, according
to decreasing ranking score, of a given dictionary. The
procedure local() in Figure 3 initializes the aggregator
state, executes the query q against the local database
D, implicitly through invoking the matching function
M , stores the query results in qr, which includes
invoking the ranking function R, and reduces qr, if
needed, to include the top k objects only. The pro-
cedure aggregate() aggregates the local state qr with
the state child− qr from a child node by merging the
two dictionaries and reducing the size of the resulting
dictionary if applicable. This procedure implements
the process of the distributed aggregation by the echo
protocol. Figure 3 contains the partial pseudocode of
the aggregator object. For instance, the processing of

1: aggregator object processQuery( )
2: var: qr : dictionary;
3: procedure local( )
4: qr := { };
5: for each o ∈ M(q,D) do
6: insert (name(o), o, R(q,o)) into qr;
7: qr := top-k(qr);
8: procedure aggregate(child-qr: dictionary)
9: qr := top-k(merge(qr, child-qr));

Fig. 3. Aggregator for processing a query q on a node with local
database D.

operators of the full query language [2], including, the
projection, aggregation, and link operators, is missing.
An aggregator object that processes these operators
is given in [2]. Second, the code in Figure 3 does
not reflect the fact that the matching function M and
the ranking function R are parameterized (see Section
IV-D). These parameters must be passed together with
the query q to the aggregator object. Third, both M and
R rely on object metrics, which must be retrieved from
the local database. Two of these metrics, idf for each
attribute and connectivity for each object, are global
and are computed using a global aggregation protocol,
which runs independent from query processing.

The performance properties of the echo protocol
[20], which determines key performance metrics of the
query processing scheme, suggests that the presented
generic approach to network search is a scalable solu-
tion. For instance, the execution time of a query grows
proportionally with the height of the spanning tree,
which is upper bounded by the diameter of the network
graph. The protocol overhead is evenly distributed on
the network graph, as two messages traverse each link
during the execution of echo. Lastly, the number of
messages each search node processes is upper bounded
by the degree of the network graph.

VI. DESIGN AND IMPLEMENTATION OF
A SEARCH NODE

The search node is the key architectural component
of a network search system (Figure 4). All search
nodes are identical in functionality and co-operatively
provide the network search service. A search node has
an interface to the management plane, which provides
an access point for network search, it executes dis-
tributed query processing (echo protocol, local data
access, matching, ranking, and aggregation), it main-
tains a real-time database with network objects, and it
includes a sensor subsystem that populates this database.
The performance goals for designing a search node
are (a) low latency for search queries, for supporting
real-time search requirements; (b) low computational
overhead for query processing, since search nodes may
be hosted by service devices; (c) high throughput of
search queries, since we expect a high number of
concurrent queries in a large system; (d) support for
a large number of network objects (larger than 10,000),
to make available to network search an extensive set of
operational data.
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Figure 4 shows the main components of a search
node and their interactions. A search node has three
interfaces: to the management plane, to peer nodes
of the search plane, and to associated devices (possi-
bly internal to a device) of a networked system. The
component on top of the figure is dedicated to query
processing. It interacts with the management plane, peer
nodes and the local database. The component on the
bottom includes the sensing functionality that updates
the database.

The component in the middle of the figure contains
the database module. Our design calls for a docu-
ment oriented NoSQL database with object-level access
[23]. Such a database allows us to implement our
object model in straightforward way, and it supports
the processing of search queries by providing the basic
functionalities for token matching through the database
query interface. The object database is complemented
with an index structure with entries of the form (key,
object id, matching metric, ranking metric). The key
field refers to a token in the query language, object id is
a pointer to the object in the database, and the matching
and ranking metrics contain information needed by the
matching and ranking functions for query processing.
The index significantly increases the performance of
token matching, at the expense of maintaining it.

Distributed query processing is achieved by local
processing and exchanging of messages between search
nodes. Figure 5 shows our design for distributed query
processing. Each circle (in the bottom of Figure 5)
represents a thread that executes asynchronously. The
distributed design allows us, on a multicore hard-
ware, to achieve a higher throughput for processing
search queries and a lower query latency compared
to a straightforward single-thread design. On top of
the figure, we find buffers for incoming and outgoing
messages, two buffers for each peer node or process
in the management plane. A message router retrieves
the messages from the message in-buffers and places
them in the input queues of the query processors.
Messages that relate to the invocation of the same
query, i.e., which contain the same invocation identifier,
are assigned to the same processor. A query processor
retrieves a message from its input queue and executes
a query processing step. Such a step includes updating
the state of the query invocation, for instance, updating
the states of the echo protocol and its aggregator, and
executing the procedures in the aggregator, for instance
the procedure local(), which accesses the local database.
As part of the query processing step, one or more mes-
sages are generated, which the query processor inserts
into the output queue. Another message router places
messages from this queue into the appropriate message
out-buffers. The optimal number of query processors in
a system configuration is dependent on the hardware
platform of the search node. In addition, it depends on
the database capacity and the amount of CPU resources
that can be devoted to network search.

We implemented the design of the search node
on a multicore architecture. All components, except
the database system, are written in Python. We use

Fig. 4. Architecture of a search node

the multiprocessing package for threading on a mul-
ticore hardware. The database component is based on
MongoDB [24], a popular opensource database system.
MongoDB is a document-oriented NoSQL system that
realizes a persistent database. (It includes supports for
distributed databases, which we are not using.) We
chose a document-oriented database system over a key-
value store package, because of the object-level ab-
stractions that a document-oriented database supports.
MongoDB allows us to implement our object model in a
straightforward manner, supports basic token matching,
and exhibits good performance for read and write oper-
ations, compared to other document-oriented databases.
While MongoDB is not an ideal database system for
our purposes—we would prefer an in-memory database
with attribute-level locking—, it seems to us currently
the best choice available. Our current prototype has
5000 objects per search node. The query processing
component runs five threads on four cores (message
routers share a core), and the database component runs
on a single core.

The above design of a search node reflects our
performance goals. The purpose of maintaining an index
structure is to increase query throughput and lower
query latency. The distributed design of local query
processing has the same objectives. It also allows us to
control the computational overhead of query processing
by choosing the appropriate number of cores for this
task.

VII. EVALUATION OF A NETWORK SEARCH
PROTOTYPE ON A CLOUD TESTBED

We have instrumented the servers of a cloud plat-
form for network search. The platform includes nine
high-performance servers, interconnected by Gigabit
Ethernet, and runs the OpenStack cloud management
software. (See [25] for details.) Each server includes a
search node. The real-time database on a search node
has currently four types of objects, namely, server,
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Fig. 5. Concurrent query processing on multicore hardware

virtual machine (VM), application, and customer. There
are approximately 5000 objects per search node, where
most objects have 20 to 30 attributes. A data sensing
component reads system files, such as ‘/proc’ [26],
libvirt configuration [27] etc., and populates and pe-
riodically updates the objects in the local database
at a rate corresponding to their respective lifetime.
The network graph that defines the peer relationships
between search nodes has small world properties and is
currently statically configured. (Each search node has
between two and four neighbors.) For all experiments,
the matching function in query processing is configured
with p = 2, and the ranking function returns the top
100 objects. Management stations that create query load
are run on lower-performing servers of the testbed. A
demonstration of this system is presented in [28].

We produce synthetic load for the performance
measurements as follows. The query load consists of
global search queries with 2 to 5 tokens each. Tokens
are either attribute names, values or attribute-value pairs,
with equal probability. The values for the tokens are
chosen uniformly at random from the global object
space. The number of tokens per query is 2 to 5 with
equal probability. Queries are injected using a Poisson
process and are sent with equal probability to each
search node on the testbed. Note that the global query
load is the same as the local query load on a search
node, since each query is executed on all servers (see
Section V). During an experiment, a search node pro-
cesses a mix of 75 percent global queries and 25 percent
local updates. The Local update load consists of insert
object, delete object and refresh attribute operations,
with equal probability. The objects and attributes are
selected from the local database with equal probability.
New objects are randomly created from a schema of
four object types. Update operations are invoked on the
local database following a Poisson process.

During an experiment, we measure two metrics: first,
the latency of each global query, measured from the
time the management station sends out a request until

it receives the response; second, the CPU utilization on
each server that runs a search node.

Before measurements are performed, the real-time
databases on the search nodes are initialized using a
script and synthetic data. For each run of an experiment,
we inject query/update load at specific rates, wait until
the system is in steady state, generally around 10
seconds, and take measurements, over a period of some
120 seconds. The query load for the experiments ranges
from 25 queries/sec to 700 queries/sec.

We report on three sets of experiments. First, we
investigate the latency of global queries in function of
the query load. Figure 6 shows the measurement results
of runs with query loads ranging from 50 milliseconds
to 450 milliseconds. As we expect, both the median
latency (more generally, the 25th, 50th, 75th, and 95th
percentile), as well as the deviation of the latencies
increase with increasing load. Further, up to a load of
200 queries/sec the deviations of the latencies are quite
small, with latencies for the 75th percentile well below
100 milliseconds.

Second, we investigate how the number of query
processors on dedicated cores affects the query latency.
Figure 7 shows four curves, each one relating to a
series of experiments for a number of query processors
ranging from one to four. The curves show the median
latencies. The curve with the three concurrent proces-
sors is based on the same measurements as Figure 6. We
observe that, for all curves, the query latency increases
with load. Beyond a certain load, the latencies rise
steeply, which we explain with approaching the capacity
of the query processing system. We also observe, for
a given latency target, say 200 milliseconds, that the
system capacity increases with the number of query
processors. Beyond a certain number of processors,
three processors in our configuration, the gain in system
capacity decreases, an effect we explain by scheduling
queries from an increasing number of processors to-
wards a single database access point.

Third, we investigate the computational overhead of
network search. Figure 8 shows the CPU utilization of
the servers produced by the search nodes in function of
the query load, for different number of query processors.
As above, the figure shows four curves, for different
numbers of query processors. The curves are based on
the same measurement results as those used by Figures
6 and 7. Each curve shares a linear segment and flattens
out at some query load. We attribute the sudden change
of slope in a curve to the query processors becoming
overloaded (which we confirmed through other mea-
surements). Recall that we run the experiments on 24
core processors, where each processor can consume
up to 4.1% of CPU capacity. The experiment shows
that controlling the number of query processors is an
effective way of controlling the overhead of the network
search system.

The above measurements demonstrate that our pro-
totype can support a load of 200 queries/sec at a latency
below 100 milliseconds for the 75th percentile of the
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Fig. 6. Latency of global queries for different query loads. Each
measurement shows the 25th, 50th, 75th, and 95th percentile value.
The node runs three concurrent query processors.

Fig. 7. Impact of concurrency of local query processing on
median latency of global queries for different query loads. The curves
represent configurations for 1,2,3,4 query processors, each processor
execution on a dedicated core.

queries, by using at most 5% of the CPU, when running
three query processors on three dedicated cores. Based
on the properties of the echo protocol, we conclude that
when the system is scaled up to, say, 100,000 nodes, the
above performance metrics will stay approximately the
same, except for the latency, which will increase.

VIII. DISCUSSION

In this paper, we have proposed a set of parameteriz-
able matching and ranking functions for a simple query
language that we developed for network search. We
have shown how matching and ranking functions can
be computed in a distributed and scalable way. Further,
we presented the design of a network search node and
reported on measurement results from a network search
prototype on a cloud testbed.

The semantics for matching and ranking introduced
in Section IV-C and IV-D are tailored to networked

Fig. 8. Computational overhead of network search: CPU usage of
search node for different query loads and number of concurrent query
processors.

systems, but not to specific technologies. For instance,
we propose specific matching rules for name resolution
or ranking policies that consider freshness of objects.
However, up to now, we did not consider specific
matching rules for IP networks, for example, although
such rules can support powerful explorative search. For
instance, given an IP address as a search term, NAT-
aware address matching could match the address to its
translated version in another domain. Furthermore, a
matching function that exploits the concept of an IP
address could match an address to a subnet or vice
versa. Also, a flow id could match another flow identifier
that belongs to the same application. Lastly, the name
of a computing device, for instance, could match data
representing the DHCP server that provides the address
for the device, or it could match the AAA rules that
define the security policy of the device.

The measurements from our prototype system show
that it is feasible to build a network search system
that can process a load of 200 global queries/sec with
an overhead of less than 5% CPU load on our cloud
platform. Knowing the design of the system and the
properties of the echo protocol that underlies query
processing, a back-of-the-envelope calculation shows
that a system of 100,000 servers processing the same
load would exhibit the same overhead per server and a
query latency of below 1 sec.

Up to now we have developed a functionally com-
plete, simple design of a network search system. Much
work remains to be done for our design to be effective
in practical scenarios. For instance, security and privacy
issues need to be addressed, concepts for search space
reduction need to be developed, search across multiple
domains needs to be investigated, etc.
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