
Choreographing Configuration Changes
Herry Herry∗, Paul Anderson†, and Michael Rovatsos‡

School of Informatics, University of Edinburgh, UK
∗h.herry@sms.ed.ac.uk, †dcspaul@ed.ac.uk, ‡mrovatso@inf.ed.ac.uk

Abstract—This paper describes the automatic generation of a
set of reactive agents capable of autonomously reconfiguring a
computing infrastructure into a specified goal state. The agent
interactions are guaranteed to be deadlock/live-lock free, can
preserve pre-specified global constraints during their execution,
and autonomically maintain the goal state once it has been
achieved. We describe novel algorithms for the generation and
execution of the agent model, and evaluate the results on some
realistic problems, using a prototype implementation.

I. INTRODUCTION

We have previously shown [1] that automated planning
techniques can be used to generate the workflows necessary
to reconfigure large computing installations. However, these
workflows are orchestrated by a central controller which
creates a potential bottleneck, and may also be susceptible
to communication failures, which are particularly likely since
reconfiguration often occurs as an autonomic response to
system failures.

Fully distributed planning, on the other hand, is not a good
solution to this problem – avoiding deadlock/livelock may
require agents to have considerable global knowledge, and
achieving this is likely to result in even more costly inter-agent
communication. Predicting the behaviour of such systems is
also more difficult and hence a fully decentralised design is
likely to be less acceptable to system administrators in real
situations.

In this paper, we present a novel solution which aims to
avoid the drawbacks of both these extremes: the workflow
generated by the planner is used to automatically construct a
set of purely reactive agents which choreograph the execution
of the workflow without the need for a central controller. This
combination provides robust, autonomous execution while
retaining the advantages of a predictable, deadlock-free work-
flow. Additionally, the agents form a self-healing system by
continuously attempting to maintain the goal state. We have
implemented this process by modifying the Nuri workflow
planner [1] to generate and deploy a reactive agent model.
Our evaluation results show that the Nuri agents can achieve
the goal state without any central control, while maintaining
pre-specified global constraints throughout the changes.

II. BACKGROUND & RELATED WORK

The scale and complexity of modern computing infras-
tructures demand an automated approach to the management
of their configuration, and tools such as Puppet [2] and
Chef [3] are now ubiquitous. Many of these tools adopt a
declarative approach which allows the explicit specification of

the desired end-state of the system – the tool then computes
the necessary workflow to achieve that state. One disadvantage
of this approach is that the user has no control over the
generated workflow which may contain intermediate states
that violate essential constraints [4]. An alternative approach
is to specify the workflow manually [5], [6]. However, this
requires a separate workflow for each initial/final state pair,
and the resulting configuration needs to be verified against the
requirements for the final state.

Most practical configuration tools are also highly centralised
– a central controller gathers information about the state of
the system and orchestrates the workflow by communicating
directly with the systems involved at each step. There has
been some previous work on distributed workflow execu-
tion using multi-agent systems (e.g. [7], [8], [9], [10]) and
the Behavioural Signatures model proposed for SmartFrog
[11] is particularly relevant. However, in all these cases, the
dependencies must be computed manually which is error-
prone and time-consuming. The resulting models must also
be validated for deadlock and livelock conditions before they
can be deployed.

III. EXAMPLE

Assume we wanted to deploy a 3-tier web application
consisting of a load balancer, a web service, and a database
service, onto three virtual machines (VMs) on a public cloud.
Each VM has an agent that controls some components, and
manages the configuration of the VM including the installed
software. The following global constraints must be satisfied in
deployment:
• The web service depends on the database service: when-

ever the web service is running then the database service
must be running as well;

• the load balancer depends on the web service: whenever
the load balancer is running then the web service must
be running as well.

To model the system, we use an object-oriented configura-
tion language called SFP which is introduced in [1]. For our
example, we define five schemata as follows (For brevity, we
omit the some procedures.):

schema VM { created = false; }
schema Service {
installed = false; running = false
procedure install { cost = 10
conditions { this.installed = false; }
effects { this.installed = true; }}
procedure start { cost = 5
conditions { this.installed = true

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper156

this.running = false; }
effects { this.running = true; }}
...
}
schema Database extends Service
schema WebService extends Service
schema LoadBalancer extends Service

The current state of the example system can be modelled
as follows:

vm1 isa VM { created = true
db isa Database { installed = false

running = false; }}
vm2 isa VM { created = true
ws isa WebService { installed = false

running = false; }}
vm3 isa VM { created = true
lb isa LoadBalancer { installed = false

running = false; }}

The above model shows that there are three VMs: vm1, vm2,
and vm3, and each has software component db, ws, and lb
respectively. All of the VMs exist, but none of the software
components are (yet) installed.

To bring the system to the desired state and preserve the
global constraints, we employ a technique described in [1]
which compiles the above model together with the specifi-
cation of goal and global constraints into a classical planning
problem [12]. We then use an off-the-shelf planner to generate
the workflow.

A configuration task consists of an initial state as repre-
sented by the above model. The goal and global constraints
can be defined in SFP as follows:

goal { vm1.db.running = true
vm2.ws.running = true; vm3.lb.running = true; }

global {
if vm3.lb.running = true then vm2.ws.running = true
if vm2.ws.running = true then vm1.db.running = true

}

From this, the planner can generate a workflow which is
used to automatically construct and deploy a set of distributed
components. These components implement a BSig model
capable of choreographing the changes autonomously. The
details of this translation process are described in section IV.

In using this model, each agent applies an execution algo-
rithm called cooperative reactive-regression that always selects
and invokes an operator that can be used to perform a transition
toward the goal state. Before invoking an operator, though,
the agent must satisfy any preconditions by selecting and
invoking appropriate local operators, and/or sending a request
to another agent to achieve particular goals described in the
preconditions. This algorithm is described in section V.

In executing the model, each agent is communicating purely
in a peer-to-peer fashion with other agents. Communication
is initiated when an agent needs to invoke an operator which
has preconditions that can only be satisfied by other agents.
Based on the replies, an agent can decide whether the selected
operator may be invoked or not.

IV. CHOREOGRAPHING THE MODEL

The choreography aims to define a “global scenario”, which
is a workflow generated by the planner, that should be exe-
cuted by all agents during configuration changes (without any
single point of control). If only one agent is involved in this
scenario, then the execution can be performed sequentially in
a straightforward way. If, however, the scenario involves more
than one agent, then it must be split up into local scenarios for
each agent. We refer to each of these as a local BSig model
which defines the agent’s local goal and specifies which local
changes can be made under what circumstances. We will refer
to the goal of a single agent as a local goal, and to the goal
of the whole system as the system goal.

Definition 1: A local goal g of an agent is defined as a set
of variable assignments, each of the form v = d, where v is
a combination of variable name and namespace, and d is a
value.

Definition 2: vi = di is a local of agent α iff vi = di ∈
postcondition(oi) and oi ∈ operators(α).

A local operator determines what local changes can be made
when.

Definition 3: A local operator oj of a Behavioural Signature
model is defined as a 4-tuple oj = 〈name, pre, post, p〉 where:
• name is a combination of namespace with operator name,
• pre and post are the precondition and postcondition, each

is a set of pairs v = d , assigning value d to variable v,
• p is an integer value that represents the priority index of

operator oj compared to other operators.
Local operators of each agent can be obtained from the

workflow by considering the namespace associated with every
procedure. Preconditions and postconditions of each operator
can be obtained from: the grounded procedure specification
and the procedure orderings of the workflow. In order to
maintain the global constraint during execution, we inject post-
conditions of precedence operators into a particular operator’s
preconditions. This ensures that the model is free of global
conflicts, even though its execution is distributed.

During execution, instead of selecting an arbitrary operator,
the agent should select one of the operators that has the
lowest priority index, which is calculated using the following
equation:

pi(oj) =

{
1 if Succj = ∅
max(pi(Succj)) + 1 if Succj 6= ∅ (1)

where Succj is the set of successor operators of oj .
Priority index values reflect the ordering constraints between

operators as specified by the workflow. Our execution algo-
rithm will use these values to ensure that there is no deadlock
or livelock situation during execution.

Local and system BSig model are defined as follows:
Definition 4: A local model is a tuple mi = 〈µi, gi,Oi〉,

where gi is the local goal, Oi is a set of local operators of
agenti, and µi is the model’s serial number.

Definition 5: A Behavioural Signature model of a system
is a tuple M = 〈A,M〉, where A is a set of agents,

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper157

Algorithm 1 ExecuteModel
1: // main thread
2: global stopped← false
3: µ, g,O ← GetLocalModel()
4: while stopped = false do
5: if GetActiveSatisfierThread() = ∅ and

AchieveLocalGoal(µ, g,O, 1) = failure then
6: stopped← true
7: return failure
8: end if
9: end while

M =
⋃
∀ag∈A{mag}, and ∀mi,mj ∈M .µi = µj .

V. EXECUTING THE MODEL

To execute the model, we use a novel algorithm called
cooperative reactive regression. It is cooperative since it
prioritizes goals requested by other components over the local
goal. It is reactive since it continuously tries to find and repair
flaws in the local model by comparing the local goal with
the current state. It involves regression because it always tries
to select and invoke the nearest operator to the goal state in
order to repair existing flaws, and recursively invokes other
local operators and/or sends a new goal to another agent in
order to satisfy the precondition of the selected operator. In
other words, the algorithm tries to execute the workflow using
a distributed backward-chaining method, which may produce
distributed, cascading effects of configuration changes if the
execution involves multiple agents. This execution algorithm
is shown in algorithms 1, 2, 3, and 4.

Each agent performs this algorithm using one main thread
and a set of satisfier threads. The main thread is responsible
for continuously finding and repairing any goal flaws. The
satisfier threads are responsible for receiving and achieving a
goal from another agent, and sending back information about
their local status.

VI. IMPLEMENTATION

We have integrated these choreography and cooperative
reactive-regression algorithms into the Nuri configuration
tool1. Currently, we use an implementation of FastDownward
[13] as the planner. The choreographer constructs a system
BSig model based on the workflow generated by this planner.
Each local model is deployed to the target agent using push-
based mechanism.

Each managed node is managed by an agent which consists
of a daemon and a set of components. The daemon is respon-
sible for managing the local BSig model: accepting a new
model from the choreographer, instantiating and constructing
required components based on the model, and executing the
model. Each component is an instance of a Nuri module, and
is responsible for managing a software package or a resource.

1See http://edin.ac/18TxUO6 for a diagram of the Nuri architecture
(Nuri source code is available at https://github.com/herry13/nuri)

Algorithm 2 AchieveLocalGoal(µ, goal,O, π)
1: current← GetLocalCurrentState()
2: flaws← ComputeFlaws(goal, current)
3: if flaws = ∅ then return no-flaw end if
4: operator ← SelectOperator(flaws,O, π)
5: if operator = None then return failure end if
6: // at this step: operator.priorityIndex >= π
7: if operator.selected = true then return ongoing end if
8: operator.selected← true
9: π′ ← operator.priorityIndex+ 1

10: prelocal, preremote ← SplitPreconditions(operator)
11: repeat
12: status = AchieveLocalGoal(µ, prelocal,O, π′)
13: until status = no-flaw or status = failure
14: if status = failure or

AchieveRemoteGoal(µ, preremote, π
′) = failure or

Invoke(operator) = failure then
15: operator.selected← false
16: return failure
17: end if
18: operator.selected← false
19: return flaw-repaired

Algorithm 3 AchieveRemoteGoal(µ, goals, π′)

1: goals′ ← SplitGoalsByAgent(goals)
2: for each 〈agent, goal〉 in goals′ do
3: response← SendGoalToAgent(agent, µ, goal, π′)
4: if response 6= success then return failure end if
5: end for
6: return success

The module includes an SFP file specifying the schema, and
implementation code (in Ruby).

Whenever an agent’s daemon receives a local BSig model,
it stops all threads and then restarts the execution using this
new model. In execution, it calls the getState Ruby method
of each component to get the current state of the resource.
This state is translated into SFP to be compared with the local
goal of the local BSig model to find any flaw. If any such
flaw exists, the daemon will search for a local operator of the
local model that can repair the flaw and satisfy the priority
index constraint. If an operator is found and it requires some
precondition provided by other agents, this daemon will send
the goal request to other agent’s daemon through HTTP/JSON
protocol. Whenever all operator’s preconditions have been
satisfied, the daemon will invoke a Ruby method that imple-
ments the selected operator. Afterwards, the execution result
is verified by the daemon by comparing post-invocation state
with postcondition of the selected operator.

VII. EVALUATION

In our first evaluation, we used Nuri to simultaneously
deploy two instances of the 3-tier web application system to
two public cloud infrastructures i.e. HPCloud and Amazon
Web Service (AWS). We varied the number of VMs in the
application layer to measure the effect of system’s size on
Nuri’s performance. These systems are deployed from scratch,
which means that there is no existing VM on any public cloud

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper158

Algorithm 4 ReceiveGoalFromAgent(agenti, µi, goali, πi)
1: // satisfier thread
2: global stopped
3: µ, g,O ← GetLocalModel()
4: if µi < µ then
5: SendResponseTo(agenti, denied)
6: else
7: repeat
8: status← AchieveLocalGoal(µ, goali,O, πi)
9: until status = no-flaw or status = failure

10: if status = no-flaw then
11: SendResponseTo(agenti, success)
12: else if status = failure then
13: SendResponseTo(agenti, failure)
14: end if
15: end if

in the initial state.
Figure 1 illustrates the comparison of deployment times of

the above system using Nuri and a centralised execution frame-
work in [1] that uses partial-order workflow execution engine.
This is due to very low network latency time (< ∼0.15s)
between the central controller with HPCloud and AWS. We
believe that the result will be different if the network latency
time is higher. However, if there is a network outage on our
infrastructure, or on the public cloud that hosts the central
controller, then the whole execution will be stopped. But in
Nuri, the execution of the system on a healthy public cloud
will continue even if there is a problem on the controller’s
infrastructure. The grey bars show that there is no signifi-
cant difference between the planning time for the centralised
framework, and the choreographing time in Nuri. Since our
choreographing process consists of planning and translation
steps, it shows that the translation requires insignificant time.

Finding a solution plan is a PSPACE-complete problem
in general case [14]. In practice, the performance of the
planner varies according to the number of modules and the
dependencies of their procedures, as well as the complexity
of the goal/global constraints formulae.

In a second evaluation experiment, we tested the self-
healing capability of Nuri on previously deployed systems.
We manually stopped or uninstalled some services randomly
and checked the state of the system several minutes later.
In another, we manually deleted some random VMs on the
public cloud. For these cases, since the agent of each VM
continuously executed the cooperative reactive regression al-
gorithm, it detected such errors as goal flaws, selected and
invoked some operators to fix them. This shows that any drift
from the desired state could be fixed distributively without any
re-choreographing. As shown in figure 2, this is reflected in
the faster recovery times compared to a central re-planning
solution.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has described a technique to compile a workflow
into a Behavioural Signature model for autonomous execu-
tion. The evaluations show that the execution of this model

Fig. 1: The deployment times using centralised and Nuri.

Sheet1

Page 3

2 603.936 515.682 88.254
3 873.92 813.544 60.376
4 941.871 881.203 60.668

0 1 2 3 4

0

200

400

600

800

1000
Centralised

Nuri

Number of deleted VM(s)

R
e
c
o
v
e
ri
n
g
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

Fig. 2: The recovering times using centralised and Nuri.

using a cooperative reactive regression algorithm: 1) enables
autonomous distributed execution and preserves the global
constraints, and 2) synchronises the agents and maintains
ordering constraints without the need for re-planning to fix
any drift from the desired state. This eliminates any single
point of failure and hence increases the system’s resilience.

ACKNOWLEDGMENT

The authors would like to thank to Lawrence Wilcock
and Eric Delliot from HP Labs Bristol, Andrew Farrell, and
anonymous reviewers. This research is fully supported by a
grant from HP Labs Innovation Research Program Award.

REFERENCES

[1] H. Herry and P. Anderson, “Planning with global constraints for com-
puting infrastructure reconfiguration,” in AAAI-12 Workshop on Problem
Solving using Classical Planners (CP4PS’12). AAAI Press, 2012.

[2] Puppet Labs, “Puppet,” 2013. [Online]. Available: http://www.
puppetlabs.com/puppet

[3] Opscode Inc., “Chef,” 2013. [Online]. Available: http://www.opscode.
com/chef

[4] H. Herry, P. Anderson, and G. Wickler, “Automated planning for
configuration changes,” in Proceedings of the 25th Large Installation
System Administration Conference (LISA ’11). Usenix Association,
2011.

[5] IBM Corp., “Integrated Service Management software, IBM Tivoli,”
2013. [Online]. Available: http://www.ibm.com/software/tivoli

[6] Microsoft Corp., “Microsoft System Center,” 2013. [Online]. Available:
http://www.microsoft.com/en-us/server-cloud/system-center

[7] A. Barker, C. D. Walton, and D. Robertson, “Choreographing web
services,” IEEE Transactions on Services Computing, vol. 2, no. 2, pp.
152–166, 2009.

[8] P. Anderson, S. Bijani, and A. Vichos, “Multi-agent negotiation of
virtual machine migration using the lightweight coordination calculus,”
in Proceedings of the 6th International KES Conference on Agents and
Multi-agent Systems – Technologies and Applications, 2012.

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper159

[9] R. Micalizio, “A distributed control loop for autonomous recovery
in a multi-agent plan,” in Proceedings of the 21st international jont
conference on Artifical intelligence. Morgan Kaufmann Publishers Inc.,
2009, pp. 1760–1765.

[10] J. A. Shah, P. R. Conrad, and B. C. Williams, “Fast distributed multi-
agent plan execution with dynamic task assignment and scheduling,” in
Proc. of ICAPS, vol. 9, 2009, pp. 289–296.

[11] P. Goldsack, J. Guijarro, S. Loughran, A. Coles, A. Farrell, A. Lain,
P. Murray, and P. Toft, “The smartfrog configuration management
framework,” ACM SIGOPS Operating Systems Review, vol. 43, no. 1,
pp. 16–25, 2009.

[12] M. Helmert, “Concise finite-domain representations for PDDL planning
tasks,” Artificial Intelligence, vol. 173, no. 5-6, pp. 503–535, 2009.

[13] ——, “The fast downward planning system,” Journal of Artificial
Intelligence Research, vol. 26, no. 1, pp. 191–246, 2006.

[14] T. Bylander, “The computational complexity of propositional strips
planning,” Artificial Intelligence, vol. 69, no. 1, pp. 165–204, 1994.

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper160

